Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parallelize input layer generation #324

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 53 additions & 35 deletions prover/src/logup_gkr/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,17 @@ use air::{EvaluationFrame, GkrData, LogUpGkrEvaluator};
use math::FieldElement;
use sumcheck::{EqFunction, MultiLinearPoly, SumCheckProverError};
use tracing::instrument;
use utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
use utils::{
batch_iter_mut, chunks, uninit_vector, ByteReader, ByteWriter, Deserializable,
DeserializationError, Serializable,
};

use crate::Trace;

mod prover;
pub use prover::prove_gkr;
#[cfg(feature = "concurrent")]
pub use utils::rayon::{current_num_threads as rayon_num_threads, prelude::*};

// EVALUATED CIRCUIT
// ================================================================================================
Expand Down Expand Up @@ -106,53 +111,66 @@ impl<E: FieldElement> EvaluatedCircuit<E> {
/// Generates the input layer of the circuit from the main trace columns and some randomness
/// provided by the verifier.
fn generate_input_layer(
main_trace: &impl Trace<BaseField = E::BaseField>,
trace: &impl Trace<BaseField = E::BaseField>,
evaluator: &impl LogUpGkrEvaluator<BaseField = E::BaseField>,
log_up_randomness: &[E],
) -> CircuitLayer<E> {
let num_fractions = evaluator.get_num_fractions();
let periodic_values = evaluator.build_periodic_values();

let mut input_layer_wires =
Vec::with_capacity(main_trace.main_segment().num_rows() * num_fractions);
let mut main_frame = EvaluationFrame::new(main_trace.main_segment().num_cols());

let mut query = vec![E::BaseField::ZERO; evaluator.get_oracles().len()];
let mut periodic_values_row = vec![E::BaseField::ZERO; periodic_values.num_columns()];
let mut numerators = vec![E::ZERO; num_fractions];
let mut denominators = vec![E::ZERO; num_fractions];
for i in 0..main_trace.main_segment().num_rows() {
let wires_from_trace_row = {
main_trace.read_main_frame(i, &mut main_frame);
periodic_values.fill_periodic_values_at(i, &mut periodic_values_row);
evaluator.build_query(&main_frame, &mut query);

evaluator.evaluate_query(
&query,
&periodic_values_row,
log_up_randomness,
&mut numerators,
&mut denominators,
);
let input_gates_values: Vec<CircuitWire<E>> = numerators
.iter()
.zip(denominators.iter())
.map(|(numerator, denominator)| CircuitWire::new(*numerator, *denominator))
.collect();
input_gates_values
};

input_layer_wires.extend(wires_from_trace_row);
}
unsafe { uninit_vector(trace.main_segment().num_rows() * num_fractions) };
let num_cols = trace.main_segment().num_cols();
let num_oracles = evaluator.get_oracles().len();
let num_periodic_cols = periodic_values.num_columns();

batch_iter_mut!(
&mut input_layer_wires,
1024,
|batch: &mut [CircuitWire<E>], batch_offset: usize| {
let mut main_frame = EvaluationFrame::new(num_cols);
let mut query = vec![E::BaseField::ZERO; num_oracles];
let mut periodic_values_row = vec![E::BaseField::ZERO; num_periodic_cols];
let mut numerators = vec![E::ZERO; num_fractions];
let mut denominators = vec![E::ZERO; num_fractions];

let row_offset = batch_offset / num_fractions;
let batch_size = batch.len();
let num_rows_per_batch = batch_size / num_fractions;

for i in
(0..trace.main_segment().num_rows()).skip(row_offset).take(num_rows_per_batch)
{
trace.read_main_frame(i, &mut main_frame);
periodic_values.fill_periodic_values_at(i, &mut periodic_values_row);
evaluator.build_query(&main_frame, &mut query);

evaluator.evaluate_query(
&query,
&periodic_values_row,
log_up_randomness,
&mut numerators,
&mut denominators,
);

let n = (i - row_offset) * num_fractions;
for ((wire, numerator), denominator) in batch[n..n + num_fractions]
.iter_mut()
.zip(numerators.iter())
.zip(denominators.iter())
{
*wire = CircuitWire::new(*numerator, *denominator);
}
}
}
);

CircuitLayer::new(input_layer_wires)
}

/// Computes the subsequent layer of the circuit from a given layer.
fn compute_next_layer(prev_layer: &CircuitLayer<E>) -> CircuitLayer<E> {
let next_layer_wires = prev_layer
.wires()
.chunks_exact(2)
let next_layer_wires = chunks!(prev_layer.wires(), 2)
.map(|input_wires| {
let left_input_wire = input_wires[0];
let right_input_wire = input_wires[1];
Expand Down
18 changes: 18 additions & 0 deletions utils/core/src/iterators.rs
Original file line number Diff line number Diff line change
Expand Up @@ -115,3 +115,21 @@ macro_rules! batch_iter_mut {
$c($e, 0);
};
}

/// Returns either a regular or a parallel iterator over at most `chunk_size` elements depending
/// on whether `concurrent` feature is enabled.
///
/// When `concurrent` feature is enabled, creates a parallel iterator; otherwise, creates a
/// regular iterator.
#[macro_export]
macro_rules! chunks {
($e: expr, $chunk_size: expr) => {{
#[cfg(feature = "concurrent")]
let result = $e.par_chunks($chunk_size);

#[cfg(not(feature = "concurrent"))]
let result = $e.chunks($chunk_size);

result
}};
}
2 changes: 1 addition & 1 deletion winterfell/src/tests/logup_gkr_periodic.rs
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ use crate::{
#[test]
fn test_logup_gkr_periodic() {
let aux_trace_width = 1;
let trace = LogUpGkrPeriodic::new(2_usize.pow(7), aux_trace_width);
let trace = LogUpGkrPeriodic::new(2_usize.pow(12), aux_trace_width);
let prover = LogUpGkrPeriodicProver::new(aux_trace_width);

let proof = prover.prove(trace).unwrap();
Expand Down