-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
148 lines (119 loc) · 5.31 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import numpy as np
import pandas as pd
import torch
import tqdm
from dataset import EgoDataset, DATA_PREFIX, LIMIT, YeastDataset
from dataset import get_mask
from models import get_model
NDCG_AT_K = 5
def ndcg_at_k(label_df, subm_df, k, private):
if private:
label_df = label_df[label_df['is_private']]
else:
label_df = label_df[~label_df['is_private']]
assert len(subm_df.drop_duplicates(['ego_id', 'u', 'v'])) == len(subm_df)
assert (subm_df.groupby('ego_id').count() > k).sum().sum() == 0
assert (label_df['u'] >= label_df['v']).sum() == 0
subm_df['rank'] = (subm_df.groupby('ego_id').cumcount() + 1)
df = pd.merge(label_df, subm_df, on=['ego_id', 'u', 'v'], how='left', indicator=True)
df['hit'] = (df['_merge'] == 'both') * 1.0
df['idcg'] = 1 / np.log2((df.groupby('ego_id').cumcount() + 1) + 1)
df['dcg'] = 0
df.loc[~df['rank'].isna(), 'dcg'] = 1 / np.log2(df['rank'] + 1)
grouped_df = df.groupby('ego_id').sum()
mean = (grouped_df['dcg'] / grouped_df['idcg']).mean()
std = (grouped_df['dcg'] / grouped_df['idcg']).std()
return mean, 1.96 * std / len(grouped_df) ** 0.5
def recommend(model, feat, edge_index, edge_attr, k):
n = feat.shape[0]
pred = model.predict(feat, edge_index, edge_attr)
mask = get_mask(feat, edge_index, edge_attr)
pred[~mask.bool()] = -np.inf
y_score = pred.reshape(-1).cpu().detach().numpy()
taken = set()
recs = []
for i in y_score.argsort()[::-1][:2*k]:
if len(recs) == k:
break
item = min(i // n, i % n), max(i // n, i % n)
if item in taken:
continue
recs.append(item)
taken.add(item)
return recs
def validate(model, test_ego_path, test_label_path, k, private, device):
label_df = pd.read_csv(test_label_path)
ego_ids = set(label_df[label_df['is_private'] == private]['ego_id'])
out_df = {
'ego_id': [],
'u': [],
'v': [],
}
for ego_id, feat, edge_attr, edge_index in tqdm.tqdm(EgoDataset(test_ego_path, LIMIT), total=len(ego_ids) * 2):
if ego_id not in ego_ids: continue
feat = torch.tensor(feat, device=device)
edge_attr = torch.tensor(edge_attr, device=device)
edge_index = torch.tensor(edge_index, device=device)
recs = recommend(model, feat, edge_index, edge_attr, k)
assert len(recs) == k
for u, v in recs:
out_df['ego_id'].append(ego_id)
out_df['u'].append(u)
out_df['v'].append(v)
return ndcg_at_k(label_df, pd.DataFrame.from_dict(out_df), k, private)
def ndcg_(model, feat, edge_attr, edge_index, label, k):
recs = recommend(model, feat, edge_index, edge_attr, k)
assert len(recs) <= k
dcg = 0
idcg = 0
for i, rec in enumerate(recs):
if ((rec[0] == label[:, 0]) & (rec[1] == label[:, 1])).any():
dcg += 1/np.log2(i+2)
if i < len(label):
idcg += 1/np.log2(i+2)
return dcg/idcg
def auc_(model, feat, edge_attr, edge_index, label):
n = len(feat)
recs = recommend(model, feat, edge_index, edge_attr, n * (n-1) // 2)
targets = np.zeros(len(recs))
for i, rec in enumerate(recs):
if ((rec[0] == label[:, 0]) & (rec[1] == label[:, 1])).any():
targets[i] = 1
from sklearn.metrics import roc_auc_score
return roc_auc_score(targets, np.arange(len(targets))[::-1])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--task', choices=['ego-vk', 'yeast'])
parser.add_argument('--dataset_path')
parser.add_argument('--model', choices=['aa', 'waa', 'walk_gnn', 'walk_gnn_no_attr', 'walk_gnn_no_node_attr', 'walk_gnn_no_edge_attr',
'gine', 'gine_ohe', 'gin_ohe', 'gin_constant', 'ppgn', 'ppgn_no_attr',
'walk_gnn_2b', 'walk_gnn_4b', 'walk_gnn_8b'])
parser.add_argument('--state_dict_path', default=None)
parser.add_argument('--device', choices=['cpu'] + ['cuda:{}'.format(i) for i in range(4)])
args = parser.parse_args()
if args.task == 'ego-vk':
model = get_model(args, 8, 4)
elif args.task == 'yeast':
model = get_model(args, 74, 3)
else:
assert False
model.eval()
with torch.no_grad():
if args.task == 'ego-vk':
metric, confidence = validate(model, DATA_PREFIX + "ego_net_te.csv", DATA_PREFIX + "val_te_pr.csv", NDCG_AT_K, True, device=torch.device(args.device))
elif args.task == 'yeast':
dataset = YeastDataset(args.dataset_path, False)
ndcgs = []
for _, feat, edge_attr, edge_index, label in tqdm.tqdm(dataset, total=len(dataset)):
feat = torch.tensor(feat, device=torch.device(args.device))
edge_attr = torch.tensor(edge_attr, device=torch.device(args.device))
edge_index = torch.tensor(edge_index, device=torch.device(args.device))
label = torch.tensor(label, device=torch.device(args.device))
ndcgs.append(ndcg_(model, feat, edge_attr, edge_index, label, NDCG_AT_K))
metric, confidence = np.mean(ndcgs), 1.96 * np.std(ndcgs) / len(ndcgs) ** 0.5
else:
assert False
print('{} +/- {}'.format(np.round(metric, 4), np.round(confidence, 4)))
if __name__ == '__main__':
main()