-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_GAN.py
86 lines (71 loc) · 2.92 KB
/
utils_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os, sys
sys.path.append(os.getcwd())
import time
import tflib as lib
import tflib.save_images
import tflib.mnist
import tflib.cifar10
import tflib.plot
import tflib.inception_score
import numpy as np
import torch
import torchvision
from torch import nn
from torch import autograd
from torch import optim
#from train import DIM
use_cuda = torch.cuda.is_available()
# For generating samples
def generate_image(frame, netG):
fixed_noise = torch.randn(DIM, DIM)
if use_cuda:
fixed_noise = fixed_noise.cuda(gpu)
noisev = autograd.Variable(fixed_noise, volatile=True)
samples = netG(noisev)
samples = samples.view(-1, 3, 32, 32)
samples = samples.mul(0.5).add(0.5)
samples = samples.cpu().data.numpy()
lib.save_images.save_images(samples, './tmp/cifar10/samples_{}.jpg'.format(frame))
# For calculating inception score
def get_inception_score(G, ):
all_samples = []
for i in xrange(10):
samples_100 = torch.randn(100, DIM)
if use_cuda:
samples_100 = samples_100.cuda(gpu)
samples_100 = autograd.Variable(samples_100, volatile=True)
all_samples.append(G(samples_100).cpu().data.numpy())
all_samples = np.concatenate(all_samples, axis=0)
all_samples = np.multiply(np.add(np.multiply(all_samples, 0.5), 0.5), 255).astype('int32')
all_samples = all_samples.reshape((-1, 3, 32, 32)).transpose(0, 2, 3, 1)
return lib.inception_score.get_inception_score(list(all_samples))
def get_inception_score_m(G, code):
all_samples = []
samples_100 = torch.randn(100, DIM)
if use_cuda:
samples_100 = samples_100.cuda(gpu)
samples_100 = autograd.Variable(samples_100, volatile=True)
all_samples.append(G(samples_100, code).cpu().data.numpy())
all_samples = np.concatenate(all_samples, axis=0)
all_samples = np.multiply(np.add(np.multiply(all_samples, 0.5), 0.5), 255).astype('int32')
all_samples = all_samples.reshape((-1, 3, 32, 32)).transpose(0, 2, 3, 1)
return lib.inception_score.get_inception_score(list(all_samples))
preprocess = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
def get_mmd_score(G, code, data):
# data: tensor of randomly sampled real images (batch x 3 x res x res)
# 'batch' should be roughly about 100
batch = data[0]
all_samples = []
samples = torch.randn(batch, DIM)
if use_cuda:
samples = samples.cuda(gpu)
data = data.cuda(gpu)
samples = autograd.Variable(samples, volatile=True)
data = autograd.Variable(data, volatile=True)
# F is the inception-v3 or NASNet-A_Mobile, the latter of which can be found here:
# https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
x = torch.mean(F(G(samples, code))-F(data), 0)
return torch.sqrt(torch.sum(x*x))