Skip to content

Latest commit

 

History

History
289 lines (214 loc) · 7.17 KB

README.md

File metadata and controls

289 lines (214 loc) · 7.17 KB

B-spline Algorithms

A comprehensive TypeScript library for working with B-splines of arbitrary dimension in arbitrary vector spaces. Built with mathematical rigor and computational efficiency in mind, this library provides a flexible foundation for B-spline operations and algorithms.

Core Features

Fundamental B-spline Operations

Each operation supports multiple algorithm implementations that can be selected based on your needs:

Evaluation Algorithms

  • De Boor's algorithm (stable and general purpose)
  • Optimized evaluation for uniform B-splines
  • Educational step-by-step implementation
const curve = new BSplineCurve2D(controlPoints, degree, {
  evaluation: new DeBoorEvaluation(), // Default stable algorithm
  // OR
  evaluation: new OptimizedEvaluation(), // Performance-focused
  // OR
  evaluation: new EducationalEvaluation(), // Clear step-by-step implementation
});

Knot Operations

  • Boehm's knot insertion algorithm
  • Oslo algorithm for knot refinement
  • Knot removal with error control
const refinedCurve = curve.insertKnot(0.5, {
    algorithm: new BoehmsInsertion()     // Classical algorithm
    // OR
    algorithm: new OsloAlgorithm()       // Better for multiple insertions
    // OR
    algorithm: new AdaptiveInsertion()   // Automatic error control
});

Degree Manipulation

  • Degree elevation with various bases
  • Degree reduction with error control
const elevatedCurve = curve.elevateDegree({
  method: new BernsteinElevation(), // Using Bernstein basis
  // OR
  method: new PowerBasisElevation(), // Using power basis
  // OR
  method: new AdaptiveElevation(), // Automatic error control
});

Derivative Computation

  • Symbolic differentiation
  • Automatic differentiation
  • Finite difference methods
const derivative = curve.derivative({
  method: new SymbolicDerivative(), // Exact derivatives
  // OR
  method: new AutomaticDerivative(), // Efficient for higher orders
  // OR
  method: new FiniteDifference(), // Numerical approximation
});

Multiplication Algorithms

  • Direct multiplication
  • FFT-based multiplication for uniform B-splines
  • Adaptive multiplication with error control
const product = f.multiply(g, {
  algorithm: new DirectMultiplication(), // Standard algorithm
  // OR
  algorithm: new FFTMultiplication(), // Fast for uniform B-splines
  // OR
  algorithm: new AdaptiveMultiplication(), // Automatic precision control
});

Blossom (Polar Form) Algorithms

  • Classical polar form computation
  • Optimized evaluation for specific cases
const blossomValue = curve.blossom([u1, u2, u3], {
  method: new ClassicalBlossom(), // Standard implementation
  // OR
  method: new OptimizedBlossom(), // Performance-focused
  // OR
  method: new SymbolicBlossom(), // Symbolic computation
});

Flexible Architecture

  • Support for B-splines of any dimension (functions, curves, surfaces, volumes)
  • Works with arbitrary vector spaces (ℝⁿ, ℂⁿ, or custom spaces)
  • Extensible design for adding new algorithms and spaces

Implementation Choices

  • Type-safe implementation in TypeScript
  • Both readable "educational" and optimized implementations
  • Comprehensive test coverage
  • Well-documented mathematical foundations

Design Philosophy

Flexible Algorithm Selection

The library supports interchangeable algorithms for core operations:

// Choose between different algorithm implementations
const curve = new BSplineCurve2D(controlPoints, degree, {
  evaluation: new OptimizedEvaluation(), // Fast evaluation
  knotInsertion: new BoehmsInsertion(), // Boehm's algorithm
  multiplication: new FastMultiplication(), // Optimized multiplication
});

// Or use convenient factory methods
const educationalCurve = BSplineFactory.createEducational(
  controlPoints,
  degree
);
const optimizedCurve = BSplineFactory.createOptimized(controlPoints, degree);

Simple Example

Easy-to-Use Curve Creation

// Create a cubic B-spline curve in 2D with automatic knot vector generation
const curve = new BSplineCurve2D(
  [
    [0, 0], // Control points as [x, y] coordinates
    [1, 1],
    [2, 0],
    [1, -1],
    [0, 0],
  ],
  3
); // Degree 3 (cubic)

// Evaluate the curve at parameter value
const point = curve.evaluate(0.5); // Returns [x, y] point

// Get curve derivatives
const tangent = curve.derivative(1); // First derivative
const curvature = curve.derivative(2); // Second derivative

// Modify the curve
const refinedCurve = curve.insertKnot(0.3); // Knot insertion
const elevatedCurve = curve.elevateDegree(); // Degree elevation

B-Spline Function Multiplication

// Create two B-spline functions (1D B-splines)
const f = new BSplineFunction(
  [
    1, // Control points as scalar values
    2,
    0.5,
    1,
  ],
  2
); // Quadratic B-spline

const g = new BSplineFunction(
  [
    0.5, // Control points as scalar values
    1,
    1.5,
  ],
  1
); // Linear B-spline

// Multiply the functions
const product = f.multiply(g);

// Evaluate the product at a parameter value
const value = product.evaluate(0.5); // Returns scalar value

// The resulting B-spline maintains mathematical properties:
console.log(product.degree); // Sum of input degrees (2 + 1 = 3)
console.log(product.domain); // Intersection of input domains
console.log(product.controlPoints.length); // New control point count

// Functions can be manipulated before/after multiplication
const refined = f.insertKnot(0.5).multiply(g.elevateDegree());

Create a cubic B-spline curve in 3D space

// Create a cubic B-spline curve in 3D space
const curve = new BSpline(
  vectorSpace3D, // Vector space definition
  controlPoints, // Control points in 3D
  knotVector, // Knot vector
  3 // Degree
);

// Evaluate the curve
const point = curve.evaluate(0.5);

// Compute the derivative
const derivative = curve.derivative();

// Insert a knot
const refinedCurve = curve.insertKnot(0.3);

Installation

npm install b-spline-algorithms

Current Status

This library is under active development. Current focus:

  • Core B-spline evaluation algorithms
  • Basic operations (knot insertion, degree elevation)
  • Foundation for arbitrary vector spaces
  • Documentation of mathematical concepts

Coming soon:

  • Additional vector space implementations
  • Advanced algorithms (subdivision, intersection)
  • Performance optimizations
  • More examples and tutorials

Contributing

Contributions are welcome! Please read our Contributing Guide for details on our code of conduct and the process for submitting pull requests.

Development Setup

  1. Fork the repository

  2. Clone your fork

  3. Install dependencies

  4. Create a feature branch

  5. Make your changes

  6. Run tests

  7. Submit a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

List any references, papers, or other libraries that inspired or informed your implementations

Contact

  • Create an issue on our GitHub repository for bug reports or feature requests

  • Submit pull requests for contributions

Version History

  • 0.0.1
    • Initial release
    • Basic B-spline functionality
    • Periodic curve support