forked from ytpeng-aimlab/SRL-Derain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadditional_rain_pixel_sampling.py
executable file
·147 lines (123 loc) · 6.03 KB
/
additional_rain_pixel_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import cv2
import numpy as np
import os
import time
from utils.bfilter2 import bfilter2
from sklearn.svm import LinearSVC
import random
def compute_mean_and_std(img, mask):
list = []
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if mask[i][j] != 0:
list.append(img[i][j])
list = np.array(list)
mean = np.mean(list)
std = np.std(list)
return mean, std
def sample_possible_rain_pixels(B_nonrain, G_nonrain, R_nonrain, B_mean, G_mean, R_mean, B_std, G_std, R_std, svm_predict_mask):
sample_mask = np.zeros_like(B_nonrain)
count = 0
coord_list = []
for i in range(B_nonrain.shape[0]):
for j in range(B_nonrain.shape[1]):
if (R_nonrain[i][j] <= R_mean + R_std) and (G_nonrain[i][j] <= G_mean + G_std) and (B_nonrain[i][j] <= B_mean + B_std) and\
(R_nonrain[i][j] >= R_mean - R_std) and (G_nonrain[i][j] >= G_mean - G_std) and (B_nonrain[i][j] >= B_mean - B_std):
coord_list.append((i, j))
count += 1
sample_index = np.random.choice(len(coord_list), size=count, replace=False)
sample_list = [coord_list[i] for i in sample_index]
for (i, j) in sample_list:
sample_mask[i][j] = 255
filtered_sample_mask = np.zeros_like(sample_mask)
filtered_sample_mask = np.where(svm_predict_mask == 255, sample_mask, 0)
return filtered_sample_mask
def sample_process(HF_rainy, mask, svm_predict_mask):
B, G, R = cv2.split(HF_rainy)
B_rain = np.where(mask != 0, B, 0)
G_rain = np.where(mask != 0, G, 0)
R_rain = np.where(mask != 0, R, 0)
B_nonrain = np.where(mask == 0, B, 0)
G_nonrain = np.where(mask == 0, G, 0)
R_nonrain = np.where(mask == 0, R, 0)
B_rain_mean, B_rain_std = compute_mean_and_std(B_rain, mask)
G_rain_mean, G_rain_std = compute_mean_and_std(G_rain, mask)
R_rain_mean, R_rain_std = compute_mean_and_std(R_rain, mask)
sample_mask = sample_possible_rain_pixels(B_nonrain, G_nonrain, R_nonrain, B_rain_mean, G_rain_mean, R_rain_mean, B_rain_std, G_rain_std, R_rain_std, svm_predict_mask)
new_rain_mask = np.where(sample_mask!=0, 255, mask)
return new_rain_mask
def svm_process(image, rain_mask):
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
normalized_image = image_gray / 255.0
# extract 9x9 window
window_size = 4
features = []
labels = []
for i in range(window_size, normalized_image.shape[0] - window_size):
for j in range(window_size, normalized_image.shape[1] - window_size):
window = normalized_image[i - window_size:i + window_size + 1, j - window_size:j + window_size + 1].ravel()
features.append(window)
labels.append(rain_mask[i, j] > 0)
features = np.array(features)
labels = np.array(labels)
# compute number of rain pixels and non-rain pixels
num_rain_samples = np.sum(labels)
if num_rain_samples == 0:
return rain_mask
num_non_rain_samples = len(labels) - num_rain_samples
# random sample the non-rain pixels to be same number of rain pixels
random_non_rain_indices = random.sample(range(num_non_rain_samples), num_rain_samples)
random_non_rain_samples = features[labels == 0][random_non_rain_indices]
# combine
balanced_features = np.vstack([features[labels == 1], random_non_rain_samples])
balanced_labels = np.concatenate([np.ones(num_rain_samples), np.zeros(num_rain_samples)])
# train svm
linear_svc_model = LinearSVC(dual=True, max_iter=5000)
linear_svc_model.fit(balanced_features, balanced_labels)
# predict svm
padded_image = cv2.copyMakeBorder(normalized_image, window_size, window_size, window_size, window_size, cv2.BORDER_REFLECT)
predicted_mask = np.zeros_like(image_gray, dtype=np.uint8)
pad_height, pad_width = padded_image.shape
for i in range(window_size, pad_height - window_size):
for j in range(window_size, pad_width - window_size):
window = padded_image[i - window_size:i + window_size + 1, j - window_size:j + window_size + 1].ravel()
prediction = linear_svc_model.predict([window])
predicted_mask[i-window_size, j-window_size] = 255 if prediction else 0
return predicted_mask
def main(args):
os.makedirs(args.save_dir_path, exist_ok=True)
img_list = os.listdir(args.rainy_dir_path)
img_list.sort()
print(img_list)
print(len(img_list))
total_time = 0
for img_name in img_list:
print(img_name)
beg = time.time()
rainy = cv2.imread(os.path.join(args.rainy_dir_path, img_name))
mask = cv2.imread(os.path.join(args.mask_dir_path, img_name[:-4]+'.png'), 0)
mask = np.where(mask!=0, 255, 0)
if np.sum(mask) == 0:
cv2.imwrite(os.path.join(args.save_dir_path, img_name[:-4]+'.png'), mask)
continue
svm_predict_mask = svm_process(rainy, mask)
rainy = (rainy / 255).astype(np.float32)
ILF = bfilter2(rainy, 5, (6, 0.2))
IHF = rainy - ILF
ILF = np.clip(ILF * 255, 0, 255)
IHF = np.clip((IHF) * 255, 0, 255)
new_rain_mask = sample_process(IHF, mask, svm_predict_mask)
cv2.imwrite(os.path.join(args.save_dir_path, img_name[:-4]+'.png'), new_rain_mask)
end = time.time()
process_time = end - beg
print("process_time:", process_time)
total_time += process_time
print("average process time", total_time/len(img_list))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--rainy_dir_path", type=str, default='dataset/Rain100L/test/input')
parser.add_argument('--mask_dir_path', type=str, default='dataset/Rain100L/test/RDP')
parser.add_argument('--save_dir_path', type=str, default='dataset/Rain100L/test/RDP_w_sampling')
args = parser.parse_args()
main(args)