-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
62 lines (43 loc) · 1.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import torch
import torch.nn as nn
import torch.optim as optim
import cifar
import model
def train(model, lr, bs, num_epochs):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
trainSet = cifar.loadCIFAR10(train=True)
dataloader = torch.utils.data.DataLoader(trainSet, batch_size=bs, shuffle=True)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
loss_history = list()
for epoch in range(num_epochs):
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
loss_history.append(epoch_loss)
print(f"Epoch {epoch+1} / {num_epochs} loss: {epoch_loss}, accuracy: {epoch_acc}")
if not os.path.exists('checkpoints'):
os.mkdir('checkpoints')
torch.save(model.state_dict(), f"checkpoints/checkpoint.pt")
return loss_history
if __name__ == '__main__':
lr = 1e-2
bs = 256
epochs = 50
torch.manual_seed(501)
model = model.VGG16()
losses = train(model, lr=lr, bs=bs, num_epochs=epochs)