-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnn.py
71 lines (51 loc) · 2.59 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
import torch.nn.functional as F
from torch_geometric.nn.inits import uniform
from conv import GNN_node, GNN_node_Virtualnode
from torch_scatter import scatter_mean
class GNN(torch.nn.Module):
def __init__(self, num_tasks, num_layer = 5, emb_dim = 300,
gnn_type = 'gin', virtual_node = True, residual = False, drop_ratio = 0.5, JK = "last", graph_pooling = "mean"):
'''
num_tasks (int): number of labels to be predicted
virtual_node (bool): whether to add virtual node or not
'''
super(GNN, self).__init__()
self.num_layer = num_layer
self.drop_ratio = drop_ratio
self.JK = JK
self.emb_dim = emb_dim
self.num_tasks = num_tasks
self.graph_pooling = graph_pooling
if self.num_layer < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
### GNN to generate node embeddings
if virtual_node:
self.gnn_node = GNN_node_Virtualnode(num_layer, emb_dim, JK = JK, drop_ratio = drop_ratio, residual = residual, gnn_type = gnn_type)
else:
self.gnn_node = GNN_node(num_layer, emb_dim, JK = JK, drop_ratio = drop_ratio, residual = residual, gnn_type = gnn_type)
### Pooling function to generate whole-graph embeddings
if self.graph_pooling == "sum":
self.pool = global_add_pool
elif self.graph_pooling == "mean":
self.pool = global_mean_pool
elif self.graph_pooling == "max":
self.pool = global_max_pool
elif self.graph_pooling == "attention":
self.pool = GlobalAttention(gate_nn = torch.nn.Sequential(torch.nn.Linear(emb_dim, 2*emb_dim), torch.nn.BatchNorm1d(2*emb_dim), torch.nn.ReLU(), torch.nn.Linear(2*emb_dim, 1)))
elif self.graph_pooling == "set2set":
self.pool = Set2Set(emb_dim, processing_steps = 2)
else:
raise ValueError("Invalid graph pooling type.")
if graph_pooling == "set2set":
self.graph_pred_linear = torch.nn.Linear(2*self.emb_dim, self.num_tasks)
else:
self.graph_pred_linear = torch.nn.Linear(self.emb_dim, self.num_tasks)
def forward(self, batched_data):
h_node = self.gnn_node(batched_data)
h_graph = self.pool(h_node, batched_data.batch)
return self.graph_pred_linear(h_graph)
if __name__ == '__main__':
GNN(num_tasks = 10)