-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy path102_How_To_Code.R
37 lines (37 loc) · 1.01 KB
/
102_How_To_Code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#
# Author: Dr Eugene O'Loughlin
# Video Title: How To... Make a Prediction using a Multiple Linear Regression Model in R
# Video Number: #102
#
# Load Marketing Data Set from datarium package
library(datarium)
#
# View first six lines
head(marketing)
#
# Dependent variable: sales
# Independent variables: youtube, facebook, and newspaper
#
# Check for multicollinearity
cor(marketing, method = "pearson") # none found
#
# Create model
salesModel <- lm(sales ~ youtube + facebook + newspaper, data = marketing)
summary(salesModel)
#
# Model can be written as:
#
# sales = 3.526667 + 0.045765 * youtube + 0.188530 * facebook - 0.001037 * newspaper
#
# Manual Prediction
youtube <- 100
facebook <- 50
newspaper <- 75
#
sales <- 3.526667 + 0.045765 * youtube + 0.188530 * facebook - 0.001037 * newspaper
print(sales)
#
# What are predicted values for each of the 200 Sales figures?
predict(salesModel)
#
predict(salesModel, data.frame(youtube = 100, facebook = 50, newspaper = 75))