-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathanalyse.py
277 lines (223 loc) · 10.8 KB
/
analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from DPLP.code.model import ParsingModel
from DPLP.code.tree import RSTTree
from DPLP.code.docreader import DocReader
import numpy as np
from os import listdir
from os.path import join as joinpath
import code.kernels as kernels
import code.vectorizers as vectorizers
from sklearn import feature_extraction
from sklearn.metrics import pairwise
import pandas as pd
import cPickle as pickle
from nltk.tree import Tree
import code.tree as ctree
# Fichier a lancer depuis DPLP
# Supprimer params inutiles
def return_trees_from_merge(path, report=False,
bcvocab=None, withdp=False, fdpvocab=None, fprojmat=None):
""" Test the parsing performance
:type path: string
:param path: path to the evaluation data
:type report: boolean
:param report: whether to report (calculate) the f1 score
"""
# ----------------------------------------
# Load the parsing model
print 'Load parsing model ...'
pm = ParsingModel(withdp=withdp,
fdpvocab=fdpvocab, fprojmat=fprojmat)
pm.loadmodel("./DPLP/model/parsing-model.pickle.gz")
# ----------------------------------------
# Read all files from the given path
doclist = [joinpath(path, fname) for fname in listdir(path) if fname.endswith('.merge')]
trees_list =[]
for fmerge in doclist:
# recuperation du nom : ici id et classe
tree_id = fmerge #.split('.')[0]
# ----------------------------------------
# Read *.merge file
dr = DocReader()
doc = dr.read(fmerge)
# ----------------------------------------
# Parsing
pred_rst = pm.sr_parse(doc, bcvocab)
strtree = pred_rst.parse()
trees_list.append((Tree.fromstring(strtree),tree_id))
# retoure liste des (tree, tree_id)
return trees_list
# CSV individuels pour le moment
def write_tree_in_csv(list_tree_tree_id):
for (tree,tree_id) in list_tree_tree_id:
f = open(tree_id+'.csv','w')
f.write(str(tree)) # python will convert \n to os.linesep
f.write('\n')
f.close() # you can omit in most cases as the destructor will call it
def read_trees_from_csv(path):
# Read all files from the given path
doclist = [joinpath(path, fname) for fname in listdir(path) if fname.endswith('.csv')]
trees_list =[]
for f in doclist:
doc = open(f, 'r')
content = doc.read()
tree = Tree.fromstring(content)
trees_list.append(tree)
return trees_list
# test d'egalite entre tree lu et tree d'origine
def test_ecriture_lecture():
print "Beginning test"
t = return_trees_from_merge('./data')
write_tree_in_csv(t)
l = read_trees_from_csv('./data')
for (ti,li) in zip(t,l):
assert(ti[0].__eq__(li))
print "Un arbre teste"
print "Test done for all trees : it's alright"
def build_all_2():
print 'For each class, we build all the trees and save them in CSVs'
path_to_save = '../data/test/try'
"""
nar_trees = return_trees_from_merge('~/Documents/s2/tal/discourseAnalysis/data/narrative')
write_tree_in_csv(nar_trees)
arg_trees = return_trees_from_merge('~/Documents/s2/tal/discourseAnalysis/data/argumentative')
write_tree_in_csv(arg_trees)
inf_trees = return_trees_from_merge('~/Documents/s2/tal/discourseAnalysis/data/informative')
write_tree_in_csv(inf_trees)
des_trees = []
# Attention, contient couples de (trees + tree_ID) ou tree_ID est le nom du fichier.
all_trees = nar_trees + arg_trees + inf_trees + des_trees
int2cl = {0:'narrative', 1:'argumentative', 2:'informative',3:'descriptive'}
T = [t[0] for t in all_trees]
pickle.dump(T,open(path_to_save+'trees.pkl','wb'))"""
T = pickle.load(open('../data/trees_with_labels.pkl','r'))
T = [t[0] for t in T]
"""y_nar = [0 for t in nar_trees]
y_arg = [1 for t in arg_trees]
y_inf = [2 for t in inf_trees]
y_des = [3 for t in des_trees]
y = np.array( y_nar + y_arg + y_inf + y_des )
pickle.dump(y,open(path_to_save+'labels.pkl','wb'))"""
index = ['bin','count','norm','height','tfid']
print 'Dicts'
D_bin = vectorizers.build_bin_vects(T)
D_count = vectorizers.build_count_vects(T)
D_norm = vectorizers.build_norm_vects(T)
D_height = vectorizers.build_height_vects(T)
D_tfid = vectorizers.build_tfid_vects(T)
D_all = {'bin':D_bin ,'count': D_count,'norm': D_norm,'height': D_height,'tfid': D_tfid}
pickle.dump(D_all,open(path_to_save+'dicts.pkl','wb'))
print 'Vects'
vectorizer = feature_extraction.DictVectorizer(sparse=False)
V_bin = vectorizer.fit_transform(D_bin)
V_count = vectorizer.fit_transform(D_count)
V_norm = vectorizer.fit_transform(D_norm)
V_height = vectorizer.fit_transform(D_height)
V_tfid = vectorizer.fit_transform(D_tfid)
V_all = {'bin':V_bin ,'count': V_count,'norm': V_norm,'height': V_height,'tfid': V_tfid}
pickle.dump(V_all,open(path_to_save+'vects.pkl','wb'))
#Y = vectorizer.inverse_transform(V_bin)
print 'Kernels'
## tree kernels
#max_depth = 15
#T_p = [ctree.prune(t,max_depth) for t in T]
#K_tree = kernels.compute_gram(T_p,T_p,kernels.tree_kernel)
#pickle.dump(K_tree,open(path_to_save+'tree_kernel.pkl'))
print 'vector kernels'
print 'linear'
K_bin_lin = pairwise.linear_kernel(V_bin)
K_count_lin = pairwise.linear_kernel(V_count)
K_norm_lin = pairwise.linear_kernel(V_norm)
K_height_lin = pairwise.linear_kernel(V_height)
K_tfid_lin = pairwise.linear_kernel(V_tfid)
K_all_lin = {'bin':K_bin_lin, 'count':K_count_lin, 'norm':K_norm_lin, 'height':K_height_lin, 'tfid':K_tfid_lin}
print 'rbf'
K_bin_rbf = pairwise.rbf_kernel(V_bin)
K_count_rbf = pairwise.rbf_kernel(V_count)
K_norm_rbf = pairwise.rbf_kernel(V_norm)
K_height_rbf = pairwise.rbf_kernel(V_height)
K_tfid_rbf = pairwise.rbf_kernel(V_tfid)
K_all_rbf = {'bin':K_bin_rbf, 'count':K_count_rbf, 'norm':K_norm_rbf, 'height':K_height_rbf, 'tfid':K_tfid_rbf}
print 'cosine sim'
K_bin_cos_sim = pairwise.cosine_similarity(V_bin)
K_count_cos_sim = pairwise.cosine_similarity(V_count)
K_norm_cos_sim = pairwise.cosine_similarity(V_norm)
K_height_cos_sim = pairwise.cosine_similarity(V_height)
K_tfid_cos_sim = pairwise.cosine_similarity(V_tfid)
K_all_cos_sim = {'bin':K_bin_cos_sim, 'count':K_count_cos_sim, 'norm':K_norm_cos_sim, 'height':K_height_cos_sim, 'tfid':K_tfid_cos_sim}
print 'euclidean distance'
K_bin_eucl_dist = pairwise.pairwise_distances(V_bin,metric='euclidean')
K_count_eucl_dist = pairwise.pairwise_distances(V_count,metric='euclidean')
K_norm_eucl_dist = pairwise.pairwise_distances(V_norm,metric='euclidean')
K_height_eucl_dist = pairwise.pairwise_distances(V_height,metric='euclidean')
K_tfid_eucl_dist = pairwise.pairwise_distances(V_tfid,metric='euclidean')
K_all_eucl_dist = {'bin':K_bin_eucl_dist, 'count':K_count_eucl_dist, 'norm':K_norm_eucl_dist, 'height':K_height_eucl_dist, 'tfid':K_tfid_eucl_dist}
print 'minkowski distance'
K_bin_mink_dist = pairwise.pairwise_distances(V_bin,metric='minkowski')
K_count_mink_dist = pairwise.pairwise_distances(V_count,metric='minkowski')
K_norm_mink_dist = pairwise.pairwise_distances(V_norm,metric='minkowski')
K_height_mink_dist = pairwise.pairwise_distances(V_height,metric='minkowski')
K_tfid_mink_dist = pairwise.pairwise_distances(V_tfid,metric='minkowski')
K_all_mink_dist = {'bin':K_bin_mink_dist, 'count':K_count_mink_dist, 'norm':K_norm_mink_dist, 'height':K_height_mink_dist, 'tfid':K_tfid_mink_dist}
K_all = {'lin':K_all_lin, 'rbf':K_all_rbf, 'cos_sim':K_all_cos_sim,'eucl_dist':K_all_eucl_dist,'mink_dist':K_all_mink_dist}
pickle.dump(K_all,open(path_to_save+'vect_kernels.pkl','wb'))
print "done"
def build_all():
# For each class, we build all the trees and save them in CSVs
nar_trees = return_trees_from_merge('~/Documents/s2/tal/discourseAnalysis/data/narrative')
write_tree_in_csv(nar_trees)
arg_trees = return_trees_from_merge('~/Documents/s2/tal/discourseAnalysis/data/argumentative/')
write_tree_in_csv(arg_trees)
inf_trees = return_trees_from_merge('~/Documents/s2/tal/discourseAnalysis/data/informative/')
write_tree_in_csv(inf_trees)
des_trees = []
#des_trees = return_trees_from_merge('~/Documents/s2/tal/discourseAnalysis/data/informative/')
#write_tree_in_csv(des_trees)
# Attention, contient couples de (trees + tree_ID) ou tree_ID est le nom du fichier.
all_trees = nar_trees + arg_trees + inf_trees + des_trees
int2cl = {0:'narrative', 1:'argumentative', 2:'informative',3:'descriptive'}
path_to_save = '~/Documents/s2/tal/discourseAnalysis/data/'
y_nar = [0 for t in nar_trees]
y_arg = [1 for t in arg_trees]
y_inf = [2 for t in inf_trees]
y_des = [3 for t in des_trees]
y = np.array( y_nar + y_arg + y_inf + y_des )
pickle.dump(y,open(path_to_save+'labels_test.pkl','wb'))
T = [t[0] for t in all_trees]
pickle.dump(T,open(path_to_save+'trees_test.pkl','wb'))
index = ['bin','count','norm','height','tfid']
#Dicts
D_bin = vectorizers.build_bin_vects(T)
D_count = vectorizers.build_count_vects(T)
D_norm = vectorizers.build_norm_vects(T)
D_height = vectorizers.build_height_vects(T)
D_tfid = vectorizers.build_tfid_vects(T)
D_df = pd.DataFrame([D_bin,D_count,D_norm,D_height,D_tfid],index=index)
D_df = D_df.transpose()
D_df.to_pickle(path_to_save+'dicts_test.pkl')
#Vects
vectorizer = feature_extraction.DictVectorizer(sparse=False)
V_bin = vectorizer.fit_transform(D_bin)
V_count = vectorizer.fit_transform(D_count)
V_norm = vectorizer.fit_transform(D_norm)
V_height = vectorizer.fit_transform(D_height)
V_tfid = vectorizer.fit_transform(D_tfid)
V_all = np.zeros((len(index),V_bin.shape[0],V_bin.shape[1]))
V_all = np.array([V_bin,V_count,V_norm,V_height,V_tfid])
V_df = []
for i in range(V_all.shape[1]):
d = {}
for j,v in enumerate(V_all[:,i]):
d[index[j]]=v
V_df.append(d)
V_df = pd.DataFrame(V_df)
V_df.to_pickle(path_to_save+'vects_test.pkl')
#euclidean distance
K_bin_eucl_dist = pairwise.pairwise_distances(V_bin,metric='euclidean')
K_count_eucl_dist = pairwise.pairwise_distances(V_count,metric='euclidean')
K_norm_eucl_dist = pairwise.pairwise_distances(V_norm,metric='euclidean')
K_height_eucl_dist = pairwise.pairwise_distances(V_height,metric='euclidean')
K_tfid_eucl_dist = pairwise.pairwise_distances(V_tfid,metric='euclidean')
K_all_eucl_dist = [K_bin_eucl_dist, K_count_eucl_dist, K_norm_eucl_dist, K_height_eucl_dist, K_tfid_eucl_dist]
K_all = {'eucl_dist':K_all_eucl_dist}
pickle.dump(K_all,open(path_to_save+'kernels_test.pkl','wb'))
build_all_2()