-
Notifications
You must be signed in to change notification settings - Fork 307
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into update_docs
- Loading branch information
Showing
49 changed files
with
1,932 additions
and
196 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -70,6 +70,7 @@ | |
"Web", | ||
"Written", | ||
"Programming", | ||
"Chemistry", | ||
] | ||
|
||
SAMPLE_CREATION_METHOD = Literal[ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
from __future__ import annotations | ||
|
||
import json | ||
import logging | ||
import re | ||
from functools import partial | ||
from typing import Any | ||
|
||
import numpy as np | ||
import tqdm | ||
|
||
from mteb.encoder_interface import PromptType | ||
from mteb.model_meta import ModelMeta | ||
from mteb.models.cohere_models import model_prompts as cohere_model_prompts | ||
from mteb.models.cohere_models import supported_languages as cohere_supported_languages | ||
from mteb.requires_package import requires_package | ||
|
||
from .wrapper import Wrapper | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class BedrockWrapper(Wrapper): | ||
def __init__( | ||
self, | ||
model_id: str, | ||
provider: str, | ||
max_tokens: int, | ||
model_prompts: dict[str, str] | None = None, | ||
**kwargs, | ||
) -> None: | ||
requires_package(self, "boto3", "The AWS SDK for Python") | ||
import boto3 | ||
|
||
boto3_session = boto3.session.Session() | ||
region_name = boto3_session.region_name | ||
self._client = boto3.client("bedrock-runtime", region_name) | ||
|
||
self._model_id = model_id | ||
self._provider = provider.lower() | ||
|
||
if self._provider == "cohere": | ||
self.model_prompts = ( | ||
self.validate_task_to_prompt_name(model_prompts) | ||
if model_prompts | ||
else None | ||
) | ||
self._max_batch_size = 96 | ||
self._max_sequence_length = max_tokens * 4 | ||
else: | ||
self._max_tokens = max_tokens | ||
|
||
def encode( | ||
self, | ||
sentences: list[str], | ||
*, | ||
task_name: str | None = None, | ||
prompt_type: PromptType | None = None, | ||
**kwargs: Any, | ||
) -> np.ndarray: | ||
requires_package(self, "boto3", "Amazon Bedrock") | ||
show_progress_bar = ( | ||
False | ||
if "show_progress_bar" not in kwargs | ||
else kwargs.pop("show_progress_bar") | ||
) | ||
if self._provider == "amazon": | ||
return self._encode_amazon(sentences, show_progress_bar) | ||
elif self._provider == "cohere": | ||
prompt_name = self.get_prompt_name( | ||
self.model_prompts, task_name, prompt_type | ||
) | ||
cohere_task_type = self.model_prompts.get(prompt_name, "search_document") | ||
return self._encode_cohere(sentences, cohere_task_type, show_progress_bar) | ||
else: | ||
raise ValueError( | ||
f"Unknown provider '{self._provider}'. Must be 'amazon' or 'cohere'." | ||
) | ||
|
||
def _encode_amazon( | ||
self, sentences: list[str], show_progress_bar: bool = False | ||
) -> np.ndarray: | ||
from botocore.exceptions import ValidationError | ||
|
||
all_embeddings = [] | ||
# https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html | ||
max_sequence_length = int(self._max_tokens * 4.5) | ||
|
||
for sentence in tqdm.tqdm( | ||
sentences, leave=False, disable=not show_progress_bar | ||
): | ||
if len(sentence) > max_sequence_length: | ||
truncated_sentence = sentence[:max_sequence_length] | ||
else: | ||
truncated_sentence = sentence | ||
|
||
try: | ||
embedding = self._embed_amazon(truncated_sentence) | ||
all_embeddings.append(embedding) | ||
|
||
except ValidationError as e: | ||
error_str = str(e) | ||
pattern = r"request input token count:\s*(\d+)" | ||
match = re.search(pattern, error_str) | ||
if match: | ||
num_tokens = int(match.group(1)) | ||
|
||
ratio = 0.9 * (self._max_tokens / num_tokens) | ||
dynamic_cutoff = int(len(truncated_sentence) * ratio) | ||
|
||
embedding = self._embed_amazon(truncated_sentence[:dynamic_cutoff]) | ||
all_embeddings.append(embedding) | ||
else: | ||
raise e | ||
|
||
return np.array(all_embeddings) | ||
|
||
def _encode_cohere( | ||
self, | ||
sentences: list[str], | ||
cohere_task_type: str, | ||
show_progress_bar: bool = False, | ||
) -> np.ndarray: | ||
batches = [ | ||
sentences[i : i + self._max_batch_size] | ||
for i in range(0, len(sentences), self._max_batch_size) | ||
] | ||
|
||
all_embeddings = [] | ||
|
||
for batch in tqdm.tqdm(batches, leave=False, disable=not show_progress_bar): | ||
response = self._client.invoke_model( | ||
body=json.dumps( | ||
{ | ||
"texts": [sent[: self._max_sequence_length] for sent in batch], | ||
"input_type": cohere_task_type, | ||
} | ||
), | ||
modelId=self._model_id, | ||
accept="*/*", | ||
contentType="application/json", | ||
) | ||
all_embeddings.extend(self._to_numpy(response)) | ||
|
||
return np.array(all_embeddings) | ||
|
||
def _embed_amazon(self, sentence: str) -> np.ndarray: | ||
response = self._client.invoke_model( | ||
body=json.dumps({"inputText": sentence}), | ||
modelId=self._model_id, | ||
accept="application/json", | ||
contentType="application/json", | ||
) | ||
return self._to_numpy(response) | ||
|
||
def _to_numpy(self, embedding_response) -> np.ndarray: | ||
response = json.loads(embedding_response.get("body").read()) | ||
key = "embedding" if self._provider == "amazon" else "embeddings" | ||
return np.array(response[key]) | ||
|
||
|
||
amazon_titan_embed_text_v1 = ModelMeta( | ||
name="bedrock/amazon-titan-embed-text-v1", | ||
revision="1", | ||
release_date="2023-09-27", | ||
languages=None, # not specified | ||
loader=partial( | ||
BedrockWrapper, | ||
model_id="amazon.titan-embed-text-v1", | ||
provider="amazon", | ||
max_tokens=8192, | ||
), | ||
max_tokens=8192, | ||
embed_dim=1536, | ||
open_weights=False, | ||
n_parameters=None, | ||
public_training_code=None, | ||
public_training_data=None, # assumed | ||
training_datasets=None, | ||
license=None, | ||
reference="https://aws.amazon.com/about-aws/whats-new/2023/09/amazon-titan-embeddings-generally-available/", | ||
similarity_fn_name="cosine", | ||
framework=["API"], | ||
use_instructions=False, | ||
) | ||
|
||
amazon_titan_embed_text_v2 = ModelMeta( | ||
name="bedrock/amazon-titan-embed-text-v2", | ||
revision="1", | ||
release_date="2024-04-30", | ||
languages=None, # not specified | ||
loader=partial( | ||
BedrockWrapper, | ||
model_id="amazon.titan-embed-text-v2:0", | ||
provider="amazon", | ||
max_tokens=8192, | ||
), | ||
max_tokens=8192, | ||
embed_dim=1024, | ||
open_weights=False, | ||
n_parameters=None, | ||
public_training_code=None, | ||
public_training_data=None, # assumed | ||
training_datasets=None, | ||
license=None, | ||
reference="https://aws.amazon.com/about-aws/whats-new/2024/04/amazon-titan-text-embeddings-v2-amazon-bedrock/", | ||
similarity_fn_name="cosine", | ||
framework=["API"], | ||
use_instructions=False, | ||
) | ||
# Note: For the original Cohere API implementation, refer to: | ||
# https://github.com/embeddings-benchmark/mteb/blob/main/mteb/models/cohere_models.py | ||
# This implementation uses the Amazon Bedrock endpoint for Cohere models. | ||
cohere_embed_english_v3 = ModelMeta( | ||
loader=partial( | ||
BedrockWrapper, | ||
model_id="cohere.embed-english-v3", | ||
provider="cohere", | ||
max_tokens=512, | ||
model_prompts=cohere_model_prompts, | ||
), | ||
name="bedrock/cohere-embed-english-v3", | ||
languages=["eng-Latn"], | ||
open_weights=False, | ||
reference="https://cohere.com/blog/introducing-embed-v3", | ||
revision="1", | ||
release_date="2023-11-02", | ||
n_parameters=None, | ||
public_training_code=None, | ||
public_training_data=None, # assumed | ||
training_datasets=None, | ||
max_tokens=512, | ||
embed_dim=1024, | ||
license=None, | ||
similarity_fn_name="cosine", | ||
framework=["API"], | ||
use_instructions=True, | ||
) | ||
|
||
cohere_embed_multilingual_v3 = ModelMeta( | ||
loader=partial( | ||
BedrockWrapper, | ||
model_id="cohere.embed-multilingual-v3", | ||
provider="cohere", | ||
max_tokens=512, | ||
model_prompts=cohere_model_prompts, | ||
), | ||
name="bedrock/cohere-embed-multilingual-v3", | ||
languages=cohere_supported_languages, | ||
open_weights=False, | ||
reference="https://cohere.com/blog/introducing-embed-v3", | ||
revision="1", | ||
release_date="2023-11-02", | ||
n_parameters=None, | ||
public_training_code=None, | ||
public_training_data=None, # assumed | ||
training_datasets=None, | ||
max_tokens=512, | ||
embed_dim=1024, | ||
license=None, | ||
similarity_fn_name="cosine", | ||
framework=["API"], | ||
use_instructions=True, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.