Skip to content

Commit

Permalink
fix: Add JMTEB Clustering datasets (#768)
Browse files Browse the repository at this point in the history
* Add JMTEB Clustering datasets
* Add points
* Add points for review
  • Loading branch information
awinml authored May 20, 2024
1 parent 6befb3b commit 970b03c
Show file tree
Hide file tree
Showing 9 changed files with 190 additions and 0 deletions.
2 changes: 2 additions & 0 deletions docs/mmteb/points/768.jsonl
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
{"GitHub": "awinml", "New dataset": 8}
{"GitHub": "isaac-chung", "Review PR": 2}
2 changes: 2 additions & 0 deletions mteb/tasks/Clustering/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,8 @@
from .fra.AlloProfClusteringP2P import *
from .fra.AlloProfClusteringS2S import *
from .fra.HALClusteringS2S import *
from .jpn.LivedoorNewsClustering import *
from .jpn.MewsC16JaClustering import *
from .multilingual.IndicReviewsClusteringP2P import *
from .multilingual.MasakhaNEWSClusteringP2P import *
from .multilingual.MasakhaNEWSClusteringS2S import *
Expand Down
37 changes: 37 additions & 0 deletions mteb/tasks/Clustering/jpn/LivedoorNewsClustering.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from mteb.abstasks.AbsTaskClusteringFast import AbsTaskClusteringFast
from mteb.abstasks.TaskMetadata import TaskMetadata


class LivedoorNewsClustering(AbsTaskClusteringFast):
metadata = TaskMetadata(
name="LivedoorNewsClustering",
description="Clustering of the news reports of a Japanese news site, Livedoor News by RONDHUIT Co, Ltd. in 2012. It contains over 7,000 news report texts across 9 categories (topics).",
reference="https://github.com/sbintuitions/JMTEB",
dataset={
"path": "sbintuitions/JMTEB",
"name": "livedoor_news",
"revision": "e4af6c73182bebb41d94cb336846e5a452454ea7",
},
type="Clustering",
category="s2s",
eval_splits=["test"],
eval_langs=["jpn-Jpan"],
main_score="v_measure",
date=("2000-01-01", "2014-02-09"),
form=["written"],
domains=["News"],
task_subtypes=["Topic classification"],
license="cc-by-nd-2.1-jp",
socioeconomic_status="high",
annotations_creators="derived",
dialect=[],
text_creation="found",
bibtex_citation="",
n_samples={"test": 1107},
avg_character_length={"test": 1082.61},
)

def dataset_transform(self):
self.dataset = self.dataset.rename_columns(
{"text": "sentences", "label": "labels"}
)
57 changes: 57 additions & 0 deletions mteb/tasks/Clustering/jpn/MewsC16JaClustering.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
from mteb.abstasks.AbsTaskClusteringFast import AbsTaskClusteringFast
from mteb.abstasks.TaskMetadata import TaskMetadata


class MewsC16JaClustering(AbsTaskClusteringFast):
metadata = TaskMetadata(
name="MewsC16JaClustering",
description="""MewsC-16 (Multilingual Short Text Clustering Dataset for News in 16 languages) is constructed from Wikinews.
This dataset is the Japanese split of MewsC-16, containing topic sentences from Wikinews articles in 12 categories.
More detailed information is available in the Appendix E of the citation.""",
reference="https://github.com/sbintuitions/JMTEB",
dataset={
"path": "sbintuitions/JMTEB",
"name": "mewsc16_ja",
"revision": "e4af6c73182bebb41d94cb336846e5a452454ea7",
},
type="Clustering",
category="s2s",
eval_splits=["test"],
eval_langs=["jpn-Jpan"],
main_score="v_measure",
date=("2002-01-01", "2019-01-31"),
form=["written"],
domains=["News"],
task_subtypes=["Topic classification"],
license="cc-by-sa-4.0",
socioeconomic_status="high",
annotations_creators="derived",
dialect=[],
text_creation="found",
bibtex_citation="""
@inproceedings{
nishikawa-etal-2022-ease,
title = "{EASE}: Entity-Aware Contrastive Learning of Sentence Embedding",
author = "Nishikawa, Sosuke and
Ri, Ryokan and
Yamada, Ikuya and
Tsuruoka, Yoshimasa and
Echizen, Isao",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.284",
pages = "3870--3885",
abstract = "We present EASE, a novel method for learning sentence embeddings via contrastive learning between sentences and their related entities.The advantage of using entity supervision is twofold: (1) entities have been shown to be a strong indicator of text semantics and thus should provide rich training signals for sentence embeddings; (2) entities are defined independently of languages and thus offer useful cross-lingual alignment supervision.We evaluate EASE against other unsupervised models both in monolingual and multilingual settings.We show that EASE exhibits competitive or better performance in English semantic textual similarity (STS) and short text clustering (STC) tasks and it significantly outperforms baseline methods in multilingual settings on a variety of tasks.Our source code, pre-trained models, and newly constructed multi-lingual STC dataset are available at https://github.com/studio-ousia/ease.",
}
""",
n_samples={"test": 992},
avg_character_length={"test": 95},
)

def dataset_transform(self):
self.dataset = self.dataset.rename_columns(
{"text": "sentences", "label": "labels"}
)
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
{
"dataset_revision": "e4af6c73182bebb41d94cb336846e5a452454ea7",
"mteb_dataset_name": "LivedoorNewsClustering",
"mteb_version": "1.10.15",
"test": {
"evaluation_time": 467.76,
"v_measure": 0.539826287544948,
"v_measures": {
"Level 0": [
0.5375342521798784,
0.5910943502833345,
0.6145159457550844,
0.5405749178389159,
0.5171663369190832,
0.5002664592267217,
0.5510727077832276,
0.4776535022956716,
0.5564596669393072,
0.5119247362282552
]
}
}
}
23 changes: 23 additions & 0 deletions results/intfloat__multilingual-e5-small/MewsC16JaClustering.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
{
"dataset_revision": "e4af6c73182bebb41d94cb336846e5a452454ea7",
"mteb_dataset_name": "MewsC16JaClustering",
"mteb_version": "1.10.15",
"test": {
"evaluation_time": 66.46,
"v_measure": 0.445783961624162,
"v_measures": {
"Level 0": [
0.45909442255508964,
0.46305961184346073,
0.4427483337819293,
0.47263199422184127,
0.47254962635535197,
0.42725383372955317,
0.43294497964596884,
0.44843650657068573,
0.4320901331069621,
0.40703017443077744
]
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
{
"dataset_revision": "e4af6c73182bebb41d94cb336846e5a452454ea7",
"mteb_dataset_name": "LivedoorNewsClustering",
"mteb_version": "1.10.15",
"test": {
"evaluation_time": 134.32,
"v_measure": 0.37346528729902917,
"v_measures": {
"Level 0": [
0.34107725561094543,
0.3791343290309538,
0.3416715311884291,
0.42353515150692833,
0.38305753322534697,
0.3330157742849174,
0.37443106402827003,
0.3557980434687236,
0.41328801563860723,
0.38964417500716964
]
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
{
"dataset_revision": "e4af6c73182bebb41d94cb336846e5a452454ea7",
"mteb_dataset_name": "MewsC16JaClustering",
"mteb_version": "1.10.15",
"test": {
"evaluation_time": 62.81,
"v_measure": 0.4343534234258306,
"v_measures": {
"Level 0": [
0.46723817526632816,
0.4502995883519553,
0.4258278925500268,
0.4352989001355879,
0.41773899563411776,
0.42619246704315167,
0.41465632852404943,
0.4116361040552486,
0.4774990451040913,
0.4171467375937491
]
}
}
}

0 comments on commit 970b03c

Please sign in to comment.