-
Notifications
You must be signed in to change notification settings - Fork 315
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c46b0d5
commit 1c037d3
Showing
2 changed files
with
212 additions
and
105 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,106 +1,214 @@ | ||
MTEB_MAIN_EN = [ | ||
"AmazonCounterfactualClassification", | ||
"AmazonPolarityClassification", | ||
"AmazonReviewsClassification", | ||
"ArguAna", | ||
"ArxivClusteringP2P", | ||
"ArxivClusteringS2S", | ||
"AskUbuntuDupQuestions", | ||
"BIOSSES", | ||
"Banking77Classification", | ||
"BiorxivClusteringP2P", | ||
"BiorxivClusteringS2S", | ||
"CQADupstackAndroidRetrieval", | ||
"CQADupstackEnglishRetrieval", | ||
"CQADupstackGamingRetrieval", | ||
"CQADupstackGisRetrieval", | ||
"CQADupstackMathematicaRetrieval", | ||
"CQADupstackPhysicsRetrieval", | ||
"CQADupstackProgrammersRetrieval", | ||
"CQADupstackStatsRetrieval", | ||
"CQADupstackTexRetrieval", | ||
"CQADupstackUnixRetrieval", | ||
"CQADupstackWebmastersRetrieval", | ||
"CQADupstackWordpressRetrieval", | ||
"ClimateFEVER", | ||
"DBPedia", | ||
"EmotionClassification", | ||
"FEVER", | ||
"FiQA2018", | ||
"HotpotQA", | ||
"ImdbClassification", | ||
"MSMARCO", | ||
"MTOPDomainClassification", | ||
"MTOPIntentClassification", | ||
"MassiveIntentClassification", | ||
"MassiveScenarioClassification", | ||
"MedrxivClusteringP2P", | ||
"MedrxivClusteringS2S", | ||
"MindSmallReranking", | ||
"NFCorpus", | ||
"NQ", | ||
"QuoraRetrieval", | ||
"RedditClustering", | ||
"RedditClusteringP2P", | ||
"SCIDOCS", | ||
"SICK-R", | ||
"STS12", | ||
"STS13", | ||
"STS14", | ||
"STS15", | ||
"STS16", | ||
"STS17", | ||
"STS22", | ||
"STSBenchmark", | ||
"SciDocsRR", | ||
"SciFact", | ||
"SprintDuplicateQuestions", | ||
"StackExchangeClustering", | ||
"StackExchangeClusteringP2P", | ||
"StackOverflowDupQuestions", | ||
"SummEval", | ||
"TRECCOVID", | ||
"Touche2020", | ||
"ToxicConversationsClassification", | ||
"TweetSentimentExtractionClassification", | ||
"TwentyNewsgroupsClustering", | ||
"TwitterSemEval2015", | ||
"TwitterURLCorpus", | ||
] | ||
from __future__ import annotations | ||
|
||
MTEB_MAIN_RU = [ | ||
"GeoreviewClassification", | ||
"GeoreviewClusteringP2P", | ||
"HeadlineClassification", | ||
"InappropriatenessClassification", | ||
"KinopoiskClassification", | ||
"MassiveIntentClassification", | ||
"MassiveScenarioClassification", | ||
"RiaNewsRetrieval", | ||
"RuBQRetrieval", | ||
"RuReviewsClassification", | ||
"RuSciBenchGRNTIClassification", | ||
"RuSciBenchGRNTIClusteringP2P", | ||
"RuSciBenchOECDClassification", | ||
"RuSciBenchOECDClusteringP2P", | ||
"RuSTSBenchmarkSTS", | ||
"STS22", | ||
"TERRa", | ||
] | ||
from dataclasses import dataclass | ||
|
||
MTEB_RETRIEVAL_WITH_INSTRUCTIONS = [ | ||
"Robust04InstructionRetrieval", | ||
"News21InstructionRetrieval", | ||
"Core17InstructionRetrieval", | ||
] | ||
|
||
MTEB_RETRIEVAL_LAW = [ | ||
"LegalSummarization", | ||
"LegalBenchConsumerContractsQA", | ||
"LegalBenchCorporateLobbying", | ||
"AILACasedocs", | ||
"AILAStatutes", | ||
"LeCaRDv2", | ||
"LegalQuAD", | ||
"GerDaLIRSmall", | ||
] | ||
@dataclass | ||
class Benchmark: | ||
name: str | ||
tasks: list[str] | ||
description: str | None = None | ||
reference: str | None = None | ||
citation: str | None = None | ||
|
||
def __iter__(self): | ||
return iter(self.tasks) | ||
|
||
def __len__(self) -> int: | ||
return len(self.tasks) | ||
|
||
def __getitem__(self, index): | ||
return self.tasks[index] | ||
|
||
|
||
MTEB_MAIN_EN = Benchmark( | ||
name="MTEB(eng)", | ||
tasks=[ | ||
"AmazonCounterfactualClassification", | ||
"AmazonPolarityClassification", | ||
"AmazonReviewsClassification", | ||
"ArguAna", | ||
"ArxivClusteringP2P", | ||
"ArxivClusteringS2S", | ||
"AskUbuntuDupQuestions", | ||
"BIOSSES", | ||
"Banking77Classification", | ||
"BiorxivClusteringP2P", | ||
"BiorxivClusteringS2S", | ||
"CQADupstackAndroidRetrieval", | ||
"CQADupstackEnglishRetrieval", | ||
"CQADupstackGamingRetrieval", | ||
"CQADupstackGisRetrieval", | ||
"CQADupstackMathematicaRetrieval", | ||
"CQADupstackPhysicsRetrieval", | ||
"CQADupstackProgrammersRetrieval", | ||
"CQADupstackStatsRetrieval", | ||
"CQADupstackTexRetrieval", | ||
"CQADupstackUnixRetrieval", | ||
"CQADupstackWebmastersRetrieval", | ||
"CQADupstackWordpressRetrieval", | ||
"ClimateFEVER", | ||
"DBPedia", | ||
"EmotionClassification", | ||
"FEVER", | ||
"FiQA2018", | ||
"HotpotQA", | ||
"ImdbClassification", | ||
"MSMARCO", | ||
"MTOPDomainClassification", | ||
"MTOPIntentClassification", | ||
"MassiveIntentClassification", | ||
"MassiveScenarioClassification", | ||
"MedrxivClusteringP2P", | ||
"MedrxivClusteringS2S", | ||
"MindSmallReranking", | ||
"NFCorpus", | ||
"NQ", | ||
"QuoraRetrieval", | ||
"RedditClustering", | ||
"RedditClusteringP2P", | ||
"SCIDOCS", | ||
"SICK-R", | ||
"STS12", | ||
"STS13", | ||
"STS14", | ||
"STS15", | ||
"STS16", | ||
"STS17", | ||
"STS22", | ||
"STSBenchmark", | ||
"SciDocsRR", | ||
"SciFact", | ||
"SprintDuplicateQuestions", | ||
"StackExchangeClustering", | ||
"StackExchangeClusteringP2P", | ||
"StackOverflowDupQuestions", | ||
"SummEval", | ||
"TRECCOVID", | ||
"Touche2020", | ||
"ToxicConversationsClassification", | ||
"TweetSentimentExtractionClassification", | ||
"TwentyNewsgroupsClustering", | ||
"TwitterSemEval2015", | ||
"TwitterURLCorpus", | ||
], | ||
description="Main English benchmarks from MTEB", | ||
citation="""@inproceedings{muennighoff-etal-2023-mteb, | ||
title = "{MTEB}: Massive Text Embedding Benchmark", | ||
author = "Muennighoff, Niklas and | ||
Tazi, Nouamane and | ||
Magne, Loic and | ||
Reimers, Nils", | ||
editor = "Vlachos, Andreas and | ||
Augenstein, Isabelle", | ||
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics", | ||
month = may, | ||
year = "2023", | ||
address = "Dubrovnik, Croatia", | ||
publisher = "Association for Computational Linguistics", | ||
url = "https://aclanthology.org/2023.eacl-main.148", | ||
doi = "10.18653/v1/2023.eacl-main.148", | ||
pages = "2014--2037", | ||
} | ||
""", | ||
) | ||
|
||
MTEB_MAIN_RU = Benchmark( | ||
name="MTEB(rus)", | ||
tasks=[ | ||
"GeoreviewClassification", | ||
"GeoreviewClusteringP2P", | ||
"HeadlineClassification", | ||
"InappropriatenessClassification", | ||
"KinopoiskClassification", | ||
"MassiveIntentClassification", | ||
"MassiveScenarioClassification", | ||
"RiaNewsRetrieval", | ||
"RuBQRetrieval", | ||
"RuReviewsClassification", | ||
"RuSciBenchGRNTIClassification", | ||
"RuSciBenchGRNTIClusteringP2P", | ||
"RuSciBenchOECDClassification", | ||
"RuSciBenchOECDClusteringP2P", | ||
"RuSTSBenchmarkSTS", | ||
"STS22", | ||
"TERRa", | ||
], | ||
description="Main Russian benchmarks from MTEB", | ||
reference="https://aclanthology.org/2023.eacl-main.148/", | ||
citation=None, | ||
) | ||
|
||
MTEB_RETRIEVAL_WITH_INSTRUCTIONS = Benchmark( | ||
name="MTEB(Retrieval w/Instructions)", | ||
tasks=[ | ||
"Robust04InstructionRetrieval", | ||
"News21InstructionRetrieval", | ||
"Core17InstructionRetrieval", | ||
], | ||
description="Retrieval w/Instructions is the task of finding relevant documents for a query that has detailed instructions.", | ||
reference="https://arxiv.org/abs/2403.15246", | ||
citation="""@misc{weller2024followir, | ||
title={FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions}, | ||
author={Orion Weller and Benjamin Chang and Sean MacAvaney and Kyle Lo and Arman Cohan and Benjamin Van Durme and Dawn Lawrie and Luca Soldaini}, | ||
year={2024}, | ||
eprint={2403.15246}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.IR} | ||
}""", | ||
) | ||
|
||
MTEB_RETRIEVAL_LAW = Benchmark( | ||
name="MTEB(law)", | ||
tasks=[ | ||
"LegalSummarization", | ||
"LegalBenchConsumerContractsQA", | ||
"LegalBenchCorporateLobbying", | ||
"AILACasedocs", | ||
"AILAStatutes", | ||
"LeCaRDv2", | ||
"LegalQuAD", | ||
"GerDaLIRSmall", | ||
], | ||
description="Legal benchmarks from MTEB", | ||
reference="https://aclanthology.org/2023.eacl-main.148/", | ||
citation=None, | ||
) | ||
|
||
SEB = Benchmark( | ||
name="MTEB(Scandinavian)", | ||
tasks=[ | ||
"BornholmBitextMining", | ||
"NorwegianCourtsBitextMining", | ||
"AngryTweetsClassification", | ||
"DanishPoliticalCommentsClassification", | ||
"DKHateClassification", | ||
"LccSentimentClassification", | ||
"MassiveIntentClassification", | ||
"MassiveScenarioClassification", | ||
"NordicLangClassification", | ||
"ScalaClassification", | ||
"NoRecClassification", | ||
"NorwegianParliamentClassification", | ||
"DalajClassification", | ||
"SwedishSentimentClassification", | ||
"SweRecClassification", | ||
"DanFEVER", | ||
"TV2Nordretrieval", | ||
"TwitterHjerneRetrieval", | ||
"NorQuadRetrieval", | ||
"SNLRetrieval", | ||
"SwednRetrieval", | ||
"SweFaqRetrieval", | ||
"WikiClusteringP2P.v2", | ||
"SNLHierarchicalClusteringP2P", | ||
"SNLHierarchicalClusteringS2S", | ||
"VGHierarchicalClusteringP2P", | ||
"VGHierarchicalClusteringS2S", | ||
"SwednClusteringP2P", | ||
"SwednClusteringS2S", | ||
], | ||
description="A curated selection of tasks coverering the Scandinavian languages; Danish, Swedish and Norwegian, including Bokmål and Nynorsk.", | ||
reference="https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/", | ||
citation=None, # TODO: add citation | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters