-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
134 lines (109 loc) · 4.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
def one_hot(labels, num_classes):
"""Embedding labels to one-hot form.
Args:
labels: (LongTensor) class labels, sized [N,].
num_classes: (int) number of classes.
Returns:
(tensor) encoded labels, sized [N, #classes].
"""
y = torch.eye(num_classes)
return y[labels]
def read_pts(file):
verts = np.genfromtxt(file)
#return utils.cent_norm(verts)
return verts
def read_seg(file):
verts = np.genfromtxt(file, dtype= (int))
return verts
def sample_3000(pts, pts_cat):
res1 = np.concatenate((pts, pts_cat.reshape(pts_cat.shape[0],1)), axis= 1) #pts*4
idx = np.random.choice(len(res1),2048,replace=True)
res = res1[idx,:]
#res = np.asarray(random.choices(res1, weights=None, cum_weights=None, k=2048))
images = res[:, 0:3]
categories = res[:, 3]
categories-=np.ones(categories.shape) #making the label 1 or 0
return images, categories
class Normalize(object):
def __call__(self, pointcloud):
assert len(pointcloud.shape)==2
norm_pointcloud = pointcloud - np.mean(pointcloud, axis=0)
norm_pointcloud /= np.max(np.linalg.norm(norm_pointcloud, axis=1))
return norm_pointcloud
def sampling(pts, pts_cat):
res1 = np.concatenate((pts,np.reshape(pts_cat, (pts_cat.shape[0], 1))), axis= 1)
res = np.asarray(random.choices(res1, weights=None, cum_weights=None, k=2048))
images = res[:, 0:3]
categories = res[:, 3]
categories-=np.ones(categories.shape)
return images, categories
class RandRotation_z(object):
def __call__(self, pointcloud):
assert len(pointcloud.shape)==2
theta = random.random() * 2. * math.pi
rot_matrix = np.array([[ math.cos(theta), -math.sin(theta), 0],
[ math.sin(theta), math.cos(theta), 0],
[0, 0, 1]])
rot_pointcloud = rot_matrix.dot(pointcloud.T).T
return rot_pointcloud
class RandomNoise(object):
def __call__(self, pointcloud):
assert len(pointcloud.shape)==2
noise = np.random.normal(0, 0.001, (pointcloud.shape))
noisy_pointcloud = pointcloud + noise
return noisy_pointcloud
class Translate_pointcloud(object):
def __call__(self,pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
class Jitter_pointcloud(object):
def __call__(self,pointcloud, sigma=0.01, clip=0.02):
self.pointcloud = pointcloud
self.N, self.C = self.pointcloud.shape
self.sigma = sigma
self.pointcloud += np.clip(self.sigma * np.random.randn(self.N,self.C), -1*clip,clip)
return self.pointcloud
class Rotate_pointcloud(object):
def __call__(self,pointcloud):
self.pointcloud = pointcloud
self.theta = np.pi*2 * np.random.uniform()
self.rotation_matrix = np.array([[np.cos(self.theta), -np.sin(self.theta)],[np.sin(self.theta), np.cos(self.theta)]])
self.pointcloud[:,[0,2]] = self.pointcloud[:,[0,2]].dot(self.rotation_matrix) # random rotation (x,z)
return self.pointcloud
def knn_return_dist(x,k):
x1 = x.permute(0,2,1)
dist, idx = torch.cdist(x1,x1,p=2).topk(k=k,dim=-1,largest=False)
dist = torch.sum(dist,axis=2)
return dist
def IDIS(pts, dist_sum, feat=None, n=2048, k=16):
#bs*c*n_pts
dist = dist_sum[:,:,:k].sum(axis=2)#knn_return_dist(pts, k)
importance = dist**2
lst = []
feat_lst = []
for i in range(importance.shape[0]):
idx = np.random.choice(pts.size()[-1],n, replace=True)
lst.append(pts[i][:,idx])
if feat is not None:
feat_lst.append(feat[i][:,idx])
return torch.stack(lst).to(device),torch.stack(feat_lst).to(device)
# def knn_return_dist2(x1,k):
# x1 = torch.tensor(np.expand_dims(x1,axis=0))
# dist, idx = torch.cdist(x1,x1,p=2).topk(k=k,dim=-1,largest=False)
# dist = torch.sum(dist,axis=2)
# return np.array(dist)
# class Idis(object):
# def __call__(self, pts, label, n=2048):
# dist = knn_return_dist2(pts,k=16)
# dist = dist.squeeze(0)
# importance = dist**2
# importance = np.divide(importance,importance.sum()) # normalize
# idx = np.random.choice(pts.shape[0],n,p=importance, replace=True)
# return pts[idx], label[idx]