-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
318 lines (278 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np
import random
import sys
import scipy.spatial.distance
import math
import random
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import os
import open3d as o3d
import time
from torch_geometric.nn import knn_interpolate, fps
import json
from collections import Counter, OrderedDict
from torch.optim import AdamW
from loss import *
from utils import *
from model import *
batch_size = 2
batch_size_test = 2
def train_all(model,disc,train_loader,valid_loader, n_cls,count=None, shape = None, epochs=500, smoothing= False, save=True):
best = 0
patience = 100
p = 0
if smoothing:
sig = 0.0
else:
sig = 0.0
log_var_a = torch.zeros((1,), requires_grad=True)
log_var_b = torch.zeros((1,), requires_grad=True)
params = ([p for p in model.parameters()] + [log_var_a] + [log_var_b])
optimizer = torch.optim.Adam(params, lr=lr)
optimizerD = torch.optim.Adam(disc.parameters(), lr=lr2)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, step*len(train_loader), eta_min=1e-4)
schedulerD = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerD, step*len(train_loader), eta_min=1e-4)
for epoch in range(epochs):
e = epoch
model.train()
running_loss = 0
for i, data in enumerate(train_loader):
inputs, labels = data['points'].to(device), data['labels'].to(device)
#UPDATE DISCRIMINATOR
optimizerD.zero_grad()
labels = labels.view(batch_size, -1)
labels2 = one_hot(labels,n_cls).to(device)
noise = torch.tensor(np.random.normal(0, sig, labels2.shape)).to(device)
labels2 = labels2+noise
inputs2 = torch.cat((inputs, labels2.type(torch.float64).reshape(batch_size,2048,n_cls)),axis=2)
inputs2 = inputs2.transpose(1,2)
real_image = inputs2
output,em1 = disc(inputs2.float())
ls_real = disc_loss(output,num=1, smoothing = smoothing)
ls_real.backward(retain_graph=True)
#Fake image
with torch.no_grad():
output = model(inputs.transpose(1,2))
output_pred = output
_,pred = torch.max(output.data,1)
pred = pred.view(batch_size,-1)
pred = one_hot(pred,n_cls)
noise = torch.tensor(np.random.normal(0, sig, pred.shape))#.to(device)
pred += noise
pred = pred.to(device)
inputs2 = torch.cat((inputs, pred.type(torch.float64).reshape(batch_size,2048,n_cls)),axis=2)
inputs2 = inputs2.transpose(1,2)
output,em2 = disc(inputs2.float())
ls_fake = disc_loss(output, num=0, smoothing = smoothing)
ls_fake.backward()
ls_D = (ls_real + ls_fake)/2
optimizerD.step()
schedulerD.step()
#UPDATE GENERATOR
#Real image
optimizer.zero_grad()
#real
inputs2 = torch.cat((inputs, labels2.type(torch.float64).reshape(batch_size,2048,n_cls)),axis=2)
inputs2 = inputs2.transpose(1,2)
real_image = inputs2
#fake
output = model(inputs.transpose(1,2))
output_pred = output
output2 = output.clone()
_,pred = torch.max(output.data,1)
pred = pred.view(batch_size,-1)
pred = one_hot(pred,n_cls)
noise = torch.tensor(np.random.normal(0, sig, pred.shape))#.to(device)
pred += noise
pred = pred.to(device)
inputs2 = torch.cat((inputs, pred.type(torch.float64).reshape(batch_size,2048,n_cls)),axis=2)
inputs2 = inputs2.transpose(1,2)
_,em1 = disc(real_image.float())
_,em2 = disc(inputs2.float())
output_pred = [output_pred,em2]
labels = [labels,em1]
total_ls, emb_ls = multitask_loss(output_pred,labels,n_cls,[log_var_a,log_var_b])
total_ls.backward()
#if i%30 == 0:
# print("Embedding Loss: {}".format(emb_ls))
optimizer.step()
scheduler.step()
std_1 = torch.exp(-log_var_a)**0.5
std_2 = torch.exp(-log_var_b)**0.5
model.eval()
total = 0
correct =0
total2 = 0
correct2 =0
loss =[]
loss2 = []
valid_iou = []
with torch.no_grad():
for i, data in enumerate(valid_loader):
inputs, labels = data['points'].to(device), data['labels'].to(device)
#Discriminator
#Real
labels = labels.view(batch_size, -1)
labels2 = one_hot(labels,n_cls).to(device)
noise = torch.tensor(np.random.normal(0, sig, labels2.shape)).to(device)
labels2 = labels2+noise
inputs2 = torch.cat((inputs, labels2.type(torch.float64).reshape(batch_size,2048,n_cls)),axis=2)
inputs2 = inputs2.transpose(1,2)
real_image = inputs2
output,em1 = disc(inputs2.float())
_,pred2 = torch.max(output.data,1)
ls_real = disc_loss(output,num=1)
total2 += batch_size_test
correct2 += (pred2 == 1).sum().item()
#Fake
with torch.no_grad():
outputs = model(inputs.transpose(1,2))
output_pred = outputs
_,pred = torch.max(outputs.data,1)
pred = pred.view(batch_size,-1)
pred = one_hot(pred,n_cls)
noise = torch.tensor(np.random.normal(0, sig, pred.shape))#.to(device)
pred += noise
pred = pred.to(device)
inputs2 = torch.cat((inputs, pred.type(torch.float64).reshape(batch_size,2048,n_cls)),axis=2)
inputs2 = inputs2.transpose(1,2)
output,em2 = disc(inputs2.float())
_,pred2 = torch.max(output.data,1)
ls_fake = disc_loss(output, num=0)
ls_total = (ls_real + ls_fake)/2
loss2.append(ls_total.item())
total2 += batch_size_test
correct2 += (pred2 == 0).sum().item()
#Generator
outputs = model(inputs.transpose(1,2))
ls = gagcn_loss(outputs,labels,n_cls, smoothing = True)
loss.append(ls.item())
_,pred = torch.max(outputs.data,1) #why? because the first return is for the values(probabilities)
total += labels.size(0) * labels.size(1)
correct += (pred == labels).sum().item()
pred = pred.cpu().detach().numpy()
ious = calculate_shape_IoU(pred,labels.cpu().detach().numpy(),n_cls)
valid_iou.append(np.mean(ious))
#Generaotr
acc = 100. * correct / total
loss_final = np.mean(loss)
iou_final = np.mean(valid_iou)
print("Epoch: {}".format(e))
print("Generator: The validation accuracy: {:.6f} and the validation loss: {:.6f} and the validation iou: {:.6f}".format(acc,loss_final,iou_final))
print("std1 {} std2 {}".format(std_1,std_2))
#Discriminator
acc = 100. * correct2 / total2
loss_final = np.mean(loss2)
print("Discriminator: The validation accuracy: {:.6f} and the validation loss: {:.6f}".format(acc,loss_final))
if best < iou_final:
best = iou_final
p = 0
if save:
torch.save(model.state_dict(), "/home/edshkim98/shkim/pretrained_group_final/partseg_"+str(shape)+'_'+str(count)+".pth")
else:
pass
else:
p +=1
print("Patience: {} / {}".format(p,patience))
if p == patience:
print("Stopped due to convergence")
return best
print("Valid best iou: ",best)
return best
if __name__ == "__main__":
dataset = {"02691156": "Airplane", "02773838": "Bag", "02954340": "Cap", "02958343": "Car", "03001627": "Chair",
"03261776": "Earphone", "03467517": "Guitar", "03624134": "Knife", "03636649": "Lamp", "03642806": "Laptop",
"03790512": "Motorbike", "03797390": "Mug", "03948459": "Pistol", "04099429": "Rocket", "04225987": "Skateboard",
"04379243": "Table"}
seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
print("Training on ShapeNet dataset")
print("#############################")
total_final = 0
total_num = 0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
for o in range(15,len(dataset.keys())):
shape = list(dataset.keys())[-3]
path = r'/home/edshkim98/shkim/shape_data/'+shape+'/'#+shape
new_path =path+'/points_label'
n_cls = seg_num[-3]
valid_files = '/home/edshkim98/shkim/shape_data/train_test_split/shuffled_val_file_list.json'
train_files = '/home/edshkim98/shkim/shape_data/train_test_split/shuffled_train_file_list.json'
test_files = '/home/edshkim98/shkim/shape_data/train_test_split/shuffled_test_file_list.json'
torch.manual_seed(42)
torch.cuda.manual_seed(42)
random.seed(42)
np.random.seed(42)
train_files = read_json(train_files)
val_files = read_json(valid_files)
test_files = read_json(test_files)
train_xs = []
val = []
test = []
for i in train_files:
if shape in i:
train_xs.append(i)
for i in val_files:
if shape in i:
val.append(i)
for i in test_files:
if shape in i:
test.append(i)
total = train_xs+val+test
np.random.shuffle(total)
#Train
train_xs = train_xs+val#np.array(total)[idx]
#Val&Test
val = test
train_dataset = CustomDataset(path,train_xs, transform =train_transforms,valid = False)
val_dataset = CustomDataset(path, val,transform=None, valid=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last = True, num_workers =2)
val_loader = DataLoader(val_dataset, batch_size=batch_size_test, shuffle=False, drop_last = True, num_workers =2)
print('######### Dataset class created #########')
print("Shape: {} Batch size: {}".format(shape,batch_size))
print('Number of images: ', len(train_xs)+len(val))
print('Sample image shape: ', train_dataset[0]['points'].shape)
print('train size in no of batch: ',len(train_loader))
print("test size in no of batch: ",len(val_loader))
print('train size: ',len(train_loader)*batch_size)
print("valid size: ",len(val_loader)*batch_size_test)
#########################
###########################
best = 0
total = len(val_loader)*batch_size_test
if len(train_loader)*batch_size > 1500:
cnts = 1
else:
cnts=2
for cnt in range(cnts):
smoothing=False
bias = True
dilation_rate = [1,3,6,6,6,1]
pyramid = [False,False,False,False,False]
dilation = 'order'
lr = 0.005
lr2 = 0.01
step = 5
se = False
gagcn = GAGCN(n_cls,k=16,pyramid=pyramid,dilation='order', dilation_rate = dilation_rate, norm='group', bias= bias)
torch.cuda.set_device(0)
gagcn.to(device)
pytorch_total_params = sum(p.numel() for p in gagcn.parameters())
print("Number of parameters (segmentation): ", pytorch_total_params)
se = False
disc = Discriminator(k=12, dilation='order', dilation_rate= [1,3,3,3], n_cls= n_cls, out_dims= [128,256,256,512],pyramid=[False,False,False,False],norm='group')
disc.to(device)
pytorch_total_params = sum(p.numel() for p in disc.parameters())
print("Number of parameters (discriminator): ", pytorch_total_params)
print("Disc smoothing: ",smoothing)
best_curr = train_all(gagcn,disc,train_loader, val_loader, n_cls, count=cnt,shape=shape, smoothing = smoothing,save=False)
if best_curr > best:
best = best_curr
print("###############################################")
print("Best Setting-> Shape {} IoU {} count {}".format(shape, best, cnt))
print("Best: {}%".format(best*100))
print("###############################################")