forked from yagami1997/TradeMind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstock_analyzer.py
2088 lines (1814 loc) · 87.7 KB
/
stock_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from dataclasses import dataclass
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime
import pytz
from pathlib import Path
import logging
from typing import Dict, List, Optional, Tuple
import json
import warnings
import webbrowser
import os
import sys
from tqdm import tqdm
import time
warnings.filterwarnings('ignore', category=Warning)
warnings.filterwarnings('ignore', category=RuntimeWarning)
@dataclass
class TechnicalPattern:
name: str
confidence: float
description: str
class StockAnalyzer:
def __init__(self):
self.setup_logging()
self.setup_paths()
self.setup_colors()
def setup_logging(self):
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("logs/stock_analyzer.log", encoding='utf-8'),
logging.StreamHandler()
]
)
self.logger = logging.getLogger("stock_analyzer")
def setup_paths(self):
self.results_path = Path("reports/stocks")
self.results_path.mkdir(parents=True, exist_ok=True)
def setup_colors(self):
self.colors = {
"primary": "#1976D2",
"secondary": "#0D47A1",
"success": "#2E7D32",
"warning": "#F57F17",
"danger": "#C62828",
"info": "#0288D1",
"background": "#FFFFFF",
"text": "#212121",
"card": "#FFFFFF",
"border": "#E0E0E0",
"gradient_start": "#1976D2",
"gradient_end": "#0D47A1",
"strong_buy": "#00796B",
"buy": "#26A69A",
"strong_sell": "#D32F2F",
"sell": "#EF5350",
"neutral": "#FFA000"
}
def identify_candlestick_patterns(self, data: pd.DataFrame) -> List[TechnicalPattern]:
patterns = []
if len(data) < 5: # 增加到5根K线以获取更多上下文
return patterns
# 获取最近的K线数据
latest = data.iloc[-1]
prev = data.iloc[-2]
prev2 = data.iloc[-3]
prev3 = data.iloc[-4]
prev4 = data.iloc[-5]
open_price = latest['Open']
close = latest['Close']
high = latest['High']
low = latest['Low']
body = abs(open_price - close)
upper_shadow = high - max(open_price, close)
lower_shadow = min(open_price, close) - low
total_length = high - low
# 计算前几天的平均波动范围作为参考
avg_range = (data['High'] - data['Low']).iloc[-5:].mean()
# 十字星形态 - 改进判断标准
if body <= total_length * 0.15 and total_length >= avg_range * 0.8:
# 增加位置判断,提高准确性
if prev['Close'] > prev['Open'] and close < open_price: # 可能是看跌十字星
patterns.append(TechnicalPattern(
name="看跌十字星",
confidence=80,
description="开盘价和收盘价接近,位于上升趋势之后,可能预示着反转"
))
elif prev['Close'] < prev['Open'] and close > open_price: # 可能是看涨十字星
patterns.append(TechnicalPattern(
name="看涨十字星",
confidence=80,
description="开盘价和收盘价接近,位于下降趋势之后,可能预示着反转"
))
else:
patterns.append(TechnicalPattern(
name="十字星",
confidence=70,
description="开盘价和收盘价接近,表示市场犹豫不决"
))
# 锤子线 - 改进判断标准
if (lower_shadow > body * 2) and (upper_shadow < body * 0.3) and (body > 0):
# 增加趋势确认
if data['Close'].iloc[-5:].mean() > data['Close'].iloc[-10:-5].mean():
confidence = 60 # 在上升趋势中出现锤子线,降低置信度
else:
confidence = 85 # 在下降趋势中出现锤子线,提高置信度
patterns.append(TechnicalPattern(
name="锤子线",
confidence=confidence,
description="下影线较长,可能预示着底部反转"
))
# 吊颈线 - 改进判断标准
if (upper_shadow > body * 2) and (lower_shadow < body * 0.3) and (body > 0):
# 增加趋势确认
if data['Close'].iloc[-5:].mean() < data['Close'].iloc[-10:-5].mean():
confidence = 60 # 在下降趋势中出现吊颈线,降低置信度
else:
confidence = 85 # 在上升趋势中出现吊颈线,提高置信度
patterns.append(TechnicalPattern(
name="吊颈线",
confidence=confidence,
description="上影线较长,可能预示着顶部反转"
))
# 增加启明星形态识别
if (len(data) >= 5 and
prev2['Close'] < prev2['Open'] and # 第一天是阴线
abs(prev['Close'] - prev['Open']) < abs(prev2['Close'] - prev2['Open']) * 0.5 and # 第二天是小实体
close > open_price and # 第三天是阳线
close > (prev2['Open'] + prev2['Close']) / 2): # 第三天收盘价高于第一天实体中点
patterns.append(TechnicalPattern(
name="启明星",
confidence=85,
description="三日反转形态,预示着可能的底部反转"
))
# 增加黄昏星形态识别
if (len(data) >= 5 and
prev2['Close'] > prev2['Open'] and # 第一天是阳线
abs(prev['Close'] - prev['Open']) < abs(prev2['Close'] - prev2['Open']) * 0.5 and # 第二天是小实体
close < open_price and # 第三天是阴线
close < (prev2['Open'] + prev2['Close']) / 2): # 第三天收盘价低于第一天实体中点
patterns.append(TechnicalPattern(
name="黄昏星",
confidence=85,
description="三日反转形态,预示着可能的顶部反转"
))
# 增加吞没形态识别
if (prev['Close'] < prev['Open'] and # 前一天是阴线
close > open_price and # 当天是阳线
open_price < prev['Close'] and # 当天开盘价低于前一天收盘价
close > prev['Open']): # 当天收盘价高于前一天开盘价
patterns.append(TechnicalPattern(
name="看涨吞没",
confidence=80,
description="两日反转形态,当天阳线吞没前一天阴线,预示着可能的底部反转"
))
if (prev['Close'] > prev['Open'] and # 前一天是阳线
close < open_price and # 当天是阴线
open_price > prev['Close'] and # 当天开盘价高于前一天收盘价
close < prev['Open']): # 当天收盘价低于前一天开盘价
patterns.append(TechnicalPattern(
name="看跌吞没",
confidence=80,
description="两日反转形态,当天阴线吞没前一天阳线,预示着可能的顶部反转"
))
return patterns
def calculate_macd(self, prices: pd.Series) -> tuple:
"""
计算MACD指标
参数:
prices: 价格序列,通常使用收盘价
返回:
tuple: (MACD线, 信号线, 柱状图)
"""
# 确保数据足够长
if len(prices) < 26:
return 0.0, 0.0, 0.0
# 计算快速和慢速EMA
ema12 = prices.ewm(span=12, adjust=False, min_periods=12).mean()
ema26 = prices.ewm(span=26, adjust=False, min_periods=26).mean()
# 计算MACD线 (DIF)
macd_line = ema12 - ema26
# 计算信号线 (DEA)
signal_line = macd_line.ewm(span=9, adjust=False, min_periods=9).mean()
# 计算柱状图 (MACD Histogram)
histogram = macd_line - signal_line
return float(macd_line.iloc[-1]), float(signal_line.iloc[-1]), float(histogram.iloc[-1])
def calculate_kdj(self, high: pd.Series, low: pd.Series, close: pd.Series, n: int = 9) -> tuple:
"""
计算KDJ指标
参数:
high: 最高价序列
low: 最低价序列
close: 收盘价序列
n: 周期,默认9日
返回:
tuple: (K值, D值, J值)
"""
# 计算RSV值 (Raw Stochastic Value)
low_list = low.rolling(window=n).min()
high_list = high.rolling(window=n).max()
# 避免除以零错误
rsv = pd.Series(0.0, index=close.index)
valid_idx = high_list != low_list
rsv[valid_idx] = (close[valid_idx] - low_list[valid_idx]) / (high_list[valid_idx] - low_list[valid_idx]) * 100
# 初始化K、D值
k = pd.Series(50.0, index=close.index)
d = pd.Series(50.0, index=close.index)
# 计算K、D、J值
for i in range(n, len(close)):
k.iloc[i] = 2/3 * k.iloc[i-1] + 1/3 * rsv.iloc[i]
d.iloc[i] = 2/3 * d.iloc[i-1] + 1/3 * k.iloc[i]
j = 3 * k - 2 * d
# 处理极端值
k = k.clip(0, 100)
d = d.clip(0, 100)
j = j.clip(0, 100)
return float(k.iloc[-1]), float(d.iloc[-1]), float(j.iloc[-1])
def calculate_rsi(self, prices: pd.Series, period: int = 14) -> float:
"""
计算相对强弱指数(RSI)
参数:
prices: 价格序列,通常使用收盘价
period: 周期,默认14日
返回:
float: RSI值
"""
# 确保数据足够长
if len(prices) <= period:
return 50.0 # 数据不足时返回中性值
# 计算价格变化
delta = prices.diff().dropna()
# 分离上涨和下跌
gain = delta.copy()
loss = delta.copy()
gain[gain < 0] = 0
loss[loss > 0] = 0
loss = abs(loss)
# 计算初始平均值
avg_gain = gain.rolling(window=period).mean().iloc[period-1]
avg_loss = loss.rolling(window=period).mean().iloc[period-1]
# 使用Wilder平滑方法计算后续值
for i in range(period, len(delta)):
avg_gain = (avg_gain * (period - 1) + gain.iloc[i]) / period
avg_loss = (avg_loss * (period - 1) + loss.iloc[i]) / period
# 避免除以零
if avg_loss == 0:
return 100.0
# 计算相对强度和RSI
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
return float(rsi)
def calculate_bollinger_bands(self, prices: pd.Series, window: int = 20, num_std: float = 2.0) -> tuple:
"""
计算布林带指标
参数:
prices: 价格序列,通常使用收盘价
window: 移动平均窗口,默认20日
num_std: 标准差倍数,默认2.0
返回:
tuple: (上轨, 中轨, 下轨, 带宽, 百分比B)
"""
# 确保数据足够长
if len(prices) < window:
return 0.0, 0.0, 0.0, 0.0, 0.0
# 计算中轨(简单移动平均线)
middle = prices.rolling(window=window).mean()
# 计算标准差
std = prices.rolling(window=window).std()
# 计算上下轨
upper = middle + (std * num_std)
lower = middle - (std * num_std)
# 计算带宽 (Bandwidth)
bandwidth = (upper - lower) / middle
# 计算百分比B (%B)
percent_b = (prices - lower) / (upper - lower)
# 获取最新值
latest_upper = float(upper.iloc[-1])
latest_middle = float(middle.iloc[-1])
latest_lower = float(lower.iloc[-1])
latest_bandwidth = float(bandwidth.iloc[-1])
latest_percent_b = float(percent_b.iloc[-1])
return latest_upper, latest_middle, latest_lower, latest_bandwidth, latest_percent_b
def generate_trading_advice(self, indicators: Dict, current_price: float, patterns: List[TechnicalPattern] = None) -> Dict:
"""
基于行业标准量化模型生成交易建议
参数:
indicators: 技术指标字典
current_price: 当前价格
patterns: K线形态列表
返回:
Dict: 包含建议、置信度、信号和颜色的字典
"""
signals = []
# 使用行业标准的量化交易模型:
# 1. 趋势确认系统 - 基于Dow理论和Charles Dow的趋势确认方法
# 2. 动量反转系统 - 基于Wilder的RSI和Lane的随机指标
# 3. 价格波动系统 - 基于Bollinger的布林带和Donchian通道
system_scores = {
'trend': 0, # 趋势确认系统得分 (-100 到 100)
'momentum': 0, # 动量反转系统得分 (-100 到 100)
'volatility': 0 # 价格波动系统得分 (-100 到 100)
}
# =============== 1. 趋势确认系统 ===============
# 基于Dow理论、移动平均线交叉和MACD
# MACD分析 (Gerald Appel的原始MACD设计)
macd = indicators['macd']
macd_line = macd['macd']
signal_line = macd['signal']
hist = macd['hist']
# MACD趋势分析
if macd_line > 0 and signal_line > 0:
# 双线在零轴上方 - Appel的强势上涨信号
system_scores['trend'] += 40
signals.append("MACD零轴以上")
elif macd_line < 0 and signal_line < 0:
# 双线在零轴下方 - Appel的强势下跌信号
system_scores['trend'] -= 40
signals.append("MACD零轴以下")
# MACD交叉信号
if hist > 0 and hist > hist * 1.05: # 柱状图为正且增长
# 金叉信号增强中
system_scores['trend'] += 30
signals.append("MACD金叉增强")
elif hist > 0:
# 普通金叉
system_scores['trend'] += 20
signals.append("MACD金叉")
elif hist < 0 and hist < hist * 1.05: # 柱状图为负且继续走低
# 死叉信号增强中
system_scores['trend'] -= 30
signals.append("MACD死叉增强")
elif hist < 0:
# 普通死叉
system_scores['trend'] -= 20
signals.append("MACD死叉")
# 移动平均线分析 (基于Dow理论的趋势确认)
if 'sma' in indicators:
sma = indicators['sma']
sma_short = sma.get('short', 0) # 短期均线 (如5日或10日)
sma_medium = sma.get('medium', 0) # 中期均线 (如20日或50日)
sma_long = sma.get('long', 0) # 长期均线 (如100日或200日)
# 多头排列 (短期>中期>长期)
if sma_short > sma_medium > sma_long:
system_scores['trend'] += 30
signals.append("均线多头排列")
# 空头排列 (短期<中期<长期)
elif sma_short < sma_medium < sma_long:
system_scores['trend'] -= 30
signals.append("均线空头排列")
# 黄金交叉 (短期上穿长期)
if sma_short > sma_long and indicators.get('sma_cross', False):
system_scores['trend'] += 20
signals.append("均线黄金交叉")
# 死亡交叉 (短期下穿长期)
elif sma_short < sma_long and indicators.get('sma_cross', False):
system_scores['trend'] -= 20
signals.append("均线死亡交叉")
# =============== 2. 动量反转系统 ===============
# 基于Wilder的RSI和Lane的随机指标KDJ
# RSI分析 (Wilder的原始RSI设计)
rsi = indicators['rsi']
# RSI超买超卖信号 (Wilder的标准区间)
if rsi <= 30:
# 超卖区域 - Wilder的反转信号
oversold_strength = 40 + (30 - rsi) # 30->40, 20->50, 10->60
system_scores['momentum'] += oversold_strength
if rsi < 20:
signals.append("RSI极度超卖")
else:
signals.append("RSI超卖")
elif rsi >= 70:
# 超买区域 - Wilder的反转信号
overbought_strength = 40 + (rsi - 70) # 70->40, 80->50, 90->60
system_scores['momentum'] -= overbought_strength
if rsi > 80:
signals.append("RSI极度超买")
else:
signals.append("RSI超买")
# RSI背离分析 (Cardwell的RSI背离理论)
if indicators.get('rsi_divergence') == 'bullish':
system_scores['momentum'] += 50
signals.append("RSI看涨背离")
elif indicators.get('rsi_divergence') == 'bearish':
system_scores['momentum'] -= 50
signals.append("RSI看跌背离")
# KDJ分析 (George Lane的随机指标理论)
kdj = indicators['kdj']
k_value = kdj['k']
d_value = kdj['d']
j_value = kdj['j']
# KDJ信号 (Lane的信号系统)
if k_value < 20 and k_value > d_value:
# KDJ金叉(超卖区) - Lane的强烈买入信号
system_scores['momentum'] += 40
signals.append("KDJ金叉(超卖区)")
elif k_value > 80 and k_value < d_value:
# KDJ死叉(超买区) - Lane的强烈卖出信号
system_scores['momentum'] -= 40
signals.append("KDJ死叉(超买区)")
# J值极值分析 (Lane的超买超卖理论扩展)
if j_value < 0:
# J值超卖 - 极端超卖信号
system_scores['momentum'] += 30
signals.append("J值超卖")
elif j_value > 100:
# J值超买 - 极端超买信号
system_scores['momentum'] -= 30
signals.append("J值超买")
# =============== 3. 价格波动系统 ===============
# 基于Bollinger带和Donchian通道
# 布林带分析 (John Bollinger的原始设计)
bb = indicators['bollinger']
bb_upper = bb['upper']
bb_middle = bb['middle']
bb_lower = bb['lower']
bb_width = bb.get('bandwidth', 0)
bb_percent = bb.get('percent_b', 0.5)
# 价格相对于布林带位置 (Bollinger的%B指标)
if current_price < bb_lower:
# 价格低于下轨 - Bollinger的超卖信号
system_scores['volatility'] += 50
signals.append("突破布林下轨")
elif current_price > bb_upper:
# 价格高于上轨 - Bollinger的超买信号
system_scores['volatility'] -= 50
signals.append("突破布林上轨")
elif bb_percent is not None:
# 使用%B指标进行更精细的分析
if bb_percent < 0.2:
# 接近下轨 - 轻微超卖
system_scores['volatility'] += 20
signals.append("接近布林下轨")
elif bb_percent > 0.8:
# 接近上轨 - 轻微超买
system_scores['volatility'] -= 20
signals.append("接近布林上轨")
# 布林带宽度分析 (Bollinger的波动性理论)
if bb_width is not None:
if bb_width < 0.1: # 带宽较窄
signals.append("布林带收窄(可能突破)")
# 不直接调整分数,因为方向不确定
elif bb_width > 0.3: # 带宽较宽
signals.append("布林带扩张(趋势确认)")
# 增强现有趋势信号
if system_scores['trend'] > 20:
system_scores['trend'] *= 1.2
elif system_scores['trend'] < -20:
system_scores['trend'] *= 1.2
# Donchian通道分析 (Richard Donchian的突破系统)
if 'donchian' in indicators:
dc = indicators['donchian']
dc_upper = dc.get('upper', 0) # 最高价通道
dc_lower = dc.get('lower', 0) # 最低价通道
if current_price > dc_upper:
# 突破上轨 - Donchian的买入信号
system_scores['volatility'] += 40
signals.append("突破Donchian上轨")
elif current_price < dc_lower:
# 突破下轨 - Donchian的卖出信号
system_scores['volatility'] -= 40
signals.append("突破Donchian下轨")
# =============== 4. K线形态分析 ===============
# 基于Steve Nison的蜡烛图理论
if patterns:
pattern_score = 0
pattern_count = 0
for pattern in patterns:
pattern_count += 1
pattern_weight = pattern.confidence / 100
# 基于Nison和Bulkowski的研究对不同形态赋予权重
if "启明星" in pattern.name or "晨星" in pattern.name:
# 启明星是强烈的底部反转信号
pattern_score += 100 * pattern_weight
signals.append(f"{pattern.name}形态")
elif "黄昏星" in pattern.name or "暮星" in pattern.name:
# 黄昏星是强烈的顶部反转信号
pattern_score -= 100 * pattern_weight
signals.append(f"{pattern.name}形态")
elif "看涨吞没" in pattern.name or "锤子" in pattern.name:
# 看涨吞没和锤子线是较强的底部反转信号
pattern_score += 80 * pattern_weight
signals.append(f"{pattern.name}形态")
elif "看跌吞没" in pattern.name or "吊颈" in pattern.name:
# 看跌吞没和吊颈线是较强的顶部反转信号
pattern_score -= 80 * pattern_weight
signals.append(f"{pattern.name}形态")
elif "看涨" in pattern.name:
# 其他看涨形态
pattern_score += 60 * pattern_weight
signals.append(f"{pattern.name}形态")
elif "看跌" in pattern.name:
# 其他看跌形态
pattern_score -= 60 * pattern_weight
signals.append(f"{pattern.name}形态")
# 将形态得分分配到各个系统中
if pattern_count > 0:
normalized_pattern_score = pattern_score / pattern_count
# 形态主要影响动量系统和波动系统
system_scores['momentum'] += normalized_pattern_score * 0.5
system_scores['volatility'] += normalized_pattern_score * 0.5
# =============== 5. 系统综合评分 ===============
# 基于多因子模型理论
# 规范化各系统得分到 -100 到 100 的范围
for key in system_scores:
system_scores[key] = max(-100, min(100, system_scores[key]))
# 系统权重 (基于市场环境的动态权重)
# 在不同市场环境下,不同系统的有效性不同
weights = {
'trend': 0.4, # 趋势确认系统权重
'momentum': 0.3, # 动量反转系统权重
'volatility': 0.3 # 价格波动系统权重
}
# 计算加权得分
weighted_score = sum(system_scores[key] * weights[key] for key in weights)
# 将加权得分转换为0-100的置信度
# 使用线性映射,更直观且符合行业惯例
confidence = 50 + weighted_score / 2
# 将置信度四舍五入到一位小数
confidence = round(confidence, 1)
# 根据置信度生成交易建议
if confidence >= 75:
advice = "强烈买入"
color = self.colors['strong_buy']
elif confidence >= 60:
advice = "建议买入"
color = self.colors['buy']
elif confidence <= 25:
advice = "强烈卖出"
color = self.colors['strong_sell']
elif confidence <= 40:
advice = "建议卖出"
color = self.colors['sell']
else:
advice = "观望"
color = self.colors['neutral']
# 添加置信度解释
confidence_explanation = self.get_confidence_explanation(system_scores, confidence)
return {
'advice': advice,
'confidence': confidence,
'signals': signals,
'color': color,
'explanation': confidence_explanation,
'system_scores': system_scores
}
def get_confidence_explanation(self, system_scores: Dict, confidence: float) -> str:
"""
生成置信度解释,基于各量化系统的得分
参数:
system_scores: 各系统得分
confidence: 最终置信度
返回:
str: 置信度解释
"""
# 确定主导系统
abs_scores = {k: abs(v) for k, v in system_scores.items()}
dominant_system = max(abs_scores, key=abs_scores.get)
# 确定信号强度描述
if confidence >= 80 or confidence <= 20:
strength = "极强"
elif confidence >= 70 or confidence <= 30:
strength = "强烈"
elif confidence >= 60 or confidence <= 40:
strength = "明确"
elif confidence >= 55 or confidence <= 45:
strength = "轻微"
else:
strength = "中性"
# 确定方向
if confidence > 50:
direction = "看涨"
elif confidence < 50:
direction = "看跌"
else:
direction = "中性"
# 系统解释
system_explanations = {
'trend': {
'positive': "趋势确认系统显示上升趋势",
'negative': "趋势确认系统显示下降趋势",
'neutral': "趋势确认系统显示无明确趋势"
},
'momentum': {
'positive': "动量反转系统显示超卖状态",
'negative': "动量反转系统显示超买状态",
'neutral': "动量反转系统处于中性区域"
},
'volatility': {
'positive': "价格波动系统显示支撑突破信号",
'negative': "价格波动系统显示阻力突破信号",
'neutral': "价格波动系统无明确突破信号"
}
}
# 确定主导系统的状态
if system_scores[dominant_system] > 30:
system_state = 'positive'
elif system_scores[dominant_system] < -30:
system_state = 'negative'
else:
system_state = 'neutral'
# 生成主要解释
main_explanation = system_explanations[dominant_system][system_state]
# 生成次要系统解释
secondary_systems = []
for system, score in system_scores.items():
if system != dominant_system and abs(score) > 30:
if score > 30:
secondary_systems.append(system_explanations[system]['positive'])
elif score < -30:
secondary_systems.append(system_explanations[system]['negative'])
# 组合解释,确保置信度只显示一位小数
if secondary_systems:
explanation = f"{strength}{direction}信号 ({confidence:.1f}%): {main_explanation},同时{','.join(secondary_systems)}"
else:
explanation = f"{strength}{direction}信号 ({confidence:.1f}%): {main_explanation}"
return explanation
def backtest_strategy(self, data: pd.DataFrame) -> Dict:
"""
基于行业标准模型的回测策略
使用标准的回测方法论,包括:
- 基于Markowitz的投资组合理论
- Sharpe比率计算
- 基于Kestner的交易系统评估指标
- 标准的交易成本模型
参数:
data: 股票历史数据
返回:
Dict: 回测结果统计
"""
# 确保有足够的数据进行回测 (至少需要50个交易日)
if len(data) < 50:
return {
'total_trades': 0,
'win_rate': 0,
'avg_profit': 0,
'max_profit': 0,
'max_loss': 0,
'profit_factor': 0,
'max_drawdown': 0,
'consecutive_losses': 0,
'avg_hold_days': 0,
'final_return': 0,
'sharpe_ratio': 0,
'sortino_ratio': 0,
'net_profit': 0,
'annualized_return': 0
}
# 准备数据
close = data['Close'].copy()
high = data['High'].copy()
low = data['Low'].copy()
open_price = data['Open'].copy()
volume = data['Volume'].copy() if 'Volume' in data.columns else pd.Series(np.ones(len(close)), index=close.index)
dates = data.index
# =============== 1. 交易参数设置 ===============
# 使用标准的交易成本模型
# 交易成本模型 (基于IBKR的固定费率模型)
commission_per_share = 0.005 # 每股0.005美元 (IBKR固定费率)
min_commission = 1.0 # 最低每单1美元
max_commission_pct = 0.01 # 最高为总成交金额的1%
# 滑点模型 (基于Kissell和Glantz的市场冲击模型)
# 滑点 = 基础滑点 + 市场冲击系数 * (交易量/日均交易量)
base_slippage_pct = 0.0005 # 基础滑点,假设为成交价的0.05%
market_impact_factor = 0.1 # 市场冲击系数
# 风险管理参数 (基于专业交易系统的标准设置)
stop_loss_pct = 0.07 # 7%止损 (行业标准风险管理)
take_profit_pct = 0.15 # 15%止盈 (风险回报比约为1:2)
max_hold_days = 20 # 最长持有20个交易日 (约一个月)
# 头寸规模 (基于Van K. Tharp的头寸规模模型)
risk_per_trade_pct = 0.02 # 每笔交易风险资金的2%
initial_capital = 10000.0 # 初始资金
# =============== 2. 技术指标计算 ===============
# 使用标准的技术指标计算方法
# 计算RSI (Wilder的原始RSI计算方法)
delta = close.diff()
gain = delta.clip(lower=0)
loss = -delta.clip(upper=0)
avg_gain = gain.rolling(window=14).mean()
avg_loss = loss.rolling(window=14).mean()
# 使用Wilder的平滑方法
for i in range(14, len(delta)):
avg_gain.iloc[i] = (avg_gain.iloc[i-1] * 13 + gain.iloc[i]) / 14
avg_loss.iloc[i] = (avg_loss.iloc[i-1] * 13 + loss.iloc[i]) / 14
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
# 计算MACD (Appel的原始MACD计算方法)
ema12 = close.ewm(span=12, adjust=False).mean()
ema26 = close.ewm(span=26, adjust=False).mean()
macd_line = ema12 - ema26
signal_line = macd_line.ewm(span=9, adjust=False).mean()
hist = macd_line - signal_line
# 计算布林带 (Bollinger的原始布林带计算方法)
sma20 = close.rolling(window=20).mean()
std20 = close.rolling(window=20).std()
upper_band = sma20 + (std20 * 2)
lower_band = sma20 - (std20 * 2)
# 计算移动平均线 (标准SMA计算)
sma5 = close.rolling(window=5).mean()
sma10 = close.rolling(window=10).mean()
sma50 = close.rolling(window=50).mean()
sma200 = close.rolling(window=200).mean() if len(close) >= 200 else pd.Series(np.nan, index=close.index)
# 计算ATR (Wilder的真实波动幅度计算方法)
tr1 = high - low
tr2 = abs(high - close.shift())
tr3 = abs(low - close.shift())
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
atr = tr.rolling(window=14).mean()
# 使用Wilder的平滑方法
for i in range(14, len(tr)):
atr.iloc[i] = (atr.iloc[i-1] * 13 + tr.iloc[i]) / 14
# =============== 3. 信号生成 ===============
# 使用标准的交易信号生成方法
# 创建信号DataFrame
signals = pd.DataFrame(index=close.index)
signals['close'] = close
signals['high'] = high
signals['low'] = low
signals['volume'] = volume
signals['rsi'] = rsi
signals['macd_line'] = macd_line
signals['signal_line'] = signal_line
signals['macd_hist'] = hist
signals['upper_band'] = upper_band
signals['lower_band'] = lower_band
signals['sma5'] = sma5
signals['sma10'] = sma10
signals['sma50'] = sma50
signals['atr'] = atr
# 生成买入信号 (基于多重确认系统)
signals['buy_signal'] = 0
# RSI超卖信号 (Wilder的RSI交易系统)
rsi_buy = (rsi < 30)
# MACD金叉信号 (Appel的MACD交易系统)
macd_buy = (macd_line > signal_line) & (macd_line.shift() < signal_line.shift())
# 布林带下轨支撑信号 (Bollinger的布林带交易系统)
bb_buy = (close < lower_band)
# 移动平均线支撑信号 (标准的移动平均线交易系统)
ma_buy = (close > sma5) & (close > sma10) & (sma5 > sma5.shift())
# 综合买入信号 (至少两个系统确认)
signals['buy_signal'] = ((rsi_buy.astype(int) + macd_buy.astype(int) +
bb_buy.astype(int) + ma_buy.astype(int)) >= 2).astype(int)
# 生成卖出信号 (基于多重确认系统)
signals['sell_signal'] = 0
# RSI超买信号
rsi_sell = (rsi > 70)
# MACD死叉信号
macd_sell = (macd_line < signal_line) & (macd_line.shift() > signal_line.shift())
# 布林带上轨阻力信号
bb_sell = (close > upper_band)
# 移动平均线阻力信号
ma_sell = (close < sma5) & (close < sma10) & (sma5 < sma5.shift())
# 综合卖出信号 (至少两个系统确认)
signals['sell_signal'] = ((rsi_sell.astype(int) + macd_sell.astype(int) +
bb_sell.astype(int) + ma_sell.astype(int)) >= 2).astype(int)
# =============== 4. 回测执行 ===============
# 使用标准的回测执行方法
# 初始化回测变量
position = 0 # 0表示空仓,1表示多头,-1表示空头
entry_price = 0.0 # 入场价格
entry_date = None # 入场日期
capital = initial_capital # 当前资金
equity = [initial_capital] # 权益曲线
trades = [] # 交易记录
# 遍历每个交易日
for i in range(50, len(signals)):
current_date = dates[i]
current_price = close.iloc[i]
current_high = high.iloc[i]
current_low = low.iloc[i]
current_volume = volume.iloc[i]
avg_volume = volume.iloc[i-20:i].mean() # 20日平均成交量
# 计算当前ATR
current_atr = atr.iloc[i]
# 如果有持仓,检查止损止盈
if position != 0:
days_held = (current_date - entry_date).days
# 计算浮动盈亏
if position == 1: # 多头
profit_pct = (current_price - entry_price) / entry_price
else: # 空头
profit_pct = (entry_price - current_price) / entry_price
# 检查止损条件
stop_triggered = False
if position == 1 and current_low <= entry_price * (1 - stop_loss_pct):
# 多头止损 - 使用当日最低价检查
stop_price = entry_price * (1 - stop_loss_pct)
stop_triggered = True
elif position == -1 and current_high >= entry_price * (1 + stop_loss_pct):
# 空头止损 - 使用当日最高价检查
stop_price = entry_price * (1 + stop_loss_pct)
stop_triggered = True
# 检查止盈条件
take_profit_triggered = False
if position == 1 and current_high >= entry_price * (1 + take_profit_pct):
# 多头止盈 - 使用当日最高价检查
take_profit_price = entry_price * (1 + take_profit_pct)
take_profit_triggered = True
elif position == -1 and current_low <= entry_price * (1 - take_profit_pct):
# 空头止盈 - 使用当日最低价检查
take_profit_price = entry_price * (1 - take_profit_pct)
take_profit_triggered = True
# 检查最大持有天数
max_hold_triggered = days_held >= max_hold_days
# 检查反向信号
reverse_signal = (position == 1 and signals['sell_signal'].iloc[i]) or \
(position == -1 and signals['buy_signal'].iloc[i])
# 平仓条件
if stop_triggered or take_profit_triggered or max_hold_triggered or reverse_signal:
# 计算交易头寸大小 (在计算滑点前先确定shares)
shares = int(risk_per_trade_pct * capital / (stop_loss_pct * entry_price))
shares = max(1, min(shares, int(capital / entry_price))) # 确保头寸合理
# 确定平仓价格
if stop_triggered:
exit_price = stop_price
exit_reason = "止损"
elif take_profit_triggered:
exit_price = take_profit_price
exit_reason = "止盈"
elif max_hold_triggered:
exit_price = current_price
exit_reason = "持有时间到期"
else: # reverse_signal
exit_price = current_price
exit_reason = "反向信号"
# 计算滑点
volume_ratio = min(1.0, shares / avg_volume) if avg_volume > 0 else 0.1 # 防止除以0
slippage_pct = base_slippage_pct + market_impact_factor * volume_ratio
if position == 1: # 多头平仓
exit_price = exit_price * (1 - slippage_pct) # 考虑滑点
else: # 空头平仓
exit_price = exit_price * (1 + slippage_pct) # 考虑滑点
# 计算交易成本
commission = max(min_commission, min(shares * commission_per_share,