-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinput_parameters.py
38 lines (32 loc) · 1.17 KB
/
input_parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
import pandas as pd
# Case specific parameters
OFF_SHIFT = 3
MAX_CONSECUTIVE_WORK_SHIFTS = 5
DELTA_NURSE_SHIFT = 1
SHIFT_LENGTH_IN_HOURS = 8
N_WORK_SHIFTS = 3
BASE_DEMAND = np.array([[3, 4, 3, 4, 3, 2, 2],
[2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2]])
NURSE_DF_MULTIPLIER = 4
BASE_DEMAND *= NURSE_DF_MULTIPLIER
nurse_df = pd.DataFrame({'nurseHours': [28, 28, 32, 32, 37, 37],
'nurseLevel': [1, 3, 1, 3, 1, 3],
'nurseCount': [1, 1, 1, 4, 4, 3]})
nurse_df['lastOneWeekRosterIndex'] = -1 # means all rosters are available
nurse_df['twoWeekRosterIndexHistory'] = '-1' # means all rosters are available
nurse_df.nurseCount *= NURSE_DF_MULTIPLIER
COSTS = {
'consecutiveShifts': -0.04,
'missingTwoDaysOffAfterNightShifts': 0.1,
'moreThanTwoConsecutiveNightShifts': 1,
'singleNightShift': 1,
'moreThanFourConsecutiveWorkShifts': 1,
'afternoonShiftsFair': None,
'nightShiftsFair': None,
'nightAndAfternoonShiftsFair': None,
'weekendShiftsFair': None}
# fair plan factors
HARD_SHIFTS_FAIR_PLANS_FACTOR = 0.5
WEEKEND_SHIFTS_FAIR_PLAN_FACTOR = 0.5