Skip to content

Commit

Permalink
XGboost code
Browse files Browse the repository at this point in the history
  • Loading branch information
eaglewarrior authored Oct 27, 2018
1 parent 6513c16 commit 5d94ad0
Showing 1 changed file with 54 additions and 0 deletions.
54 changes: 54 additions & 0 deletions xgboost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# XGBoost

# Install xgboost following the instructions on this link: http://xgboost.readthedocs.io/en/latest/build.html#

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values

# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]

# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

# Fitting XGBoost to the Training set
from xgboost import XGBClassifier
classifier = XGBClassifier()
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

# Applying k-Fold Cross Validation
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10)
accuracies.mean()
accuracies.std()









0 comments on commit 5d94ad0

Please sign in to comment.