-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
91 lines (81 loc) · 2.46 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import pathlib
from setuptools import setup
# =============================================================================
# CONSTANTS
# =============================================================================
PATH = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))
REQUIREMENTS = [
"attrs>=23.2.0",
"scipy>=1.12.0",
"numpy==1.23.1",
"pyscf>=2.5.0",
"h5py>=3.1.0",
"pyberny>=0.6.3",
"geomeTRIC>=0.9.7.2",
"GPyOpt>=1.2.6",
"pyDOE>=0.3.8",
"matplotlib>=3.8.3",
"matplotlib-inline>=0.1.6",
"py3Dmol>=2.0.4",
"notebook>=6.5.6",
"notebook_shim>=0.2.4",
"jupyter>=1.0.0",
"ipykernel>=6.29.3",
"rise>=5.7.1",
]
with open(PATH / "amcess" / "__init__.py") as fp:
for line in fp.readlines():
if line.startswith("__version__ = "):
VERSION = line.split("=", 1)[-1].replace('"', "").strip()
break
with open("README.md", "r") as readme:
LONG_DESCRIPTION = readme.read()
# =============================================================================
# FUNCTIONS
# =============================================================================
setup(
name="amcess2024",
version="0.1.2a20",
author="""
Edison Florez,
Andy Zapata,
Daniel Bajac,
Alejandra Mendez,
Cesar Ibarguen,
José Aucar
""",
author_email="""
edisonffhc@gmail.com,
danianescobarv@gmail.com
""",
packages=["amcess", "amcess/data"],
install_requires=REQUIREMENTS,
license="The GPLv3 License",
description="Atomic and Molecular Cluster Energy Surface Sampler",
long_description_content_type="text/markdown",
long_description=LONG_DESCRIPTION,
url="https://gitlab.com/ADanianZE/amcess",
keywords=[
"Atomic Cluster",
"Molecular Cluster",
"optimization",
"Potential Energy Surface",
"PES",
"Monte Carlo",
"Simulated Annealing",
"Bayesian Optimization",
],
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Operating System :: OS Independent",
"Programming Language :: Python",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: Implementation :: CPython",
"Topic :: Scientific/Engineering",
],
include_package_data=True,
)