-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE_anomaly_detector.py
310 lines (247 loc) · 12.8 KB
/
VAE_anomaly_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import math
from collections import OrderedDict
from typing import Callable, Sequence
import mlflow
import numpy as np
import torch
from torch import nn
from torch import optim
from torch.distributions import MultivariateNormal
# noinspection PyProtectedMember
from torch.nn.modules.loss import _Loss
# noinspection PyProtectedMember
from torch.utils.data import DataLoader
from base.base_generative_anomaly_detector import BaseGenerativeAnomalyDetector
from base.base_networks import MultivariateGaussianEncoder, Decoder
class VAEAnomalyDetector(BaseGenerativeAnomalyDetector):
""" VAE-based anomaly detection.
Prediction of anomaly scores for samples based on a reconstruction loss value.
Referring to Kingma, D. P. & Welling, M. Auto-encoding variational bayes (2013).
Parameters
----------
batch_size : int, default=128
Batch size.
n_jobs_dataloader : int, default=4
Value for parameter num_workers of torch.utils.data.DataLoader
(https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader).
Indicates how many subprocesses to use for data loading with values greater 0 enabling
multi-process data loading.
n_epochs : int, default=10
Number of epochs.
device : {'cpu', 'cuda'}, default='cpu'
Specifies the computational device using device agnostic code:
(https://pytorch.org/docs/stable/notes/cuda.html).
scorer : Callable
Scorer instance to be used in score function.
learning_rate : float, default=0.0001
Learning rate.
linear : bool, default=True
Specifies if only linear layers without activation are used in encoder and decoder.
n_hidden_features : Sequence[int], default=None
Is Ignored if liner is True.
Number of units used in the hidden encoder and decoder layers.
random_state : int, default=None
Seed value to be applied in order to create deterministic results.
latent_dimensions : int, default=2
Number of latent dimensions.
n_draws_latent_distribution : float, default=1
Number of draws from the distribution modeled by the probabilistic encoder (L).
softmax_for_final_decoder_layer : bool, default=False
Specifies if a softmax layer is inserted after the final decoder layer.
reconstruction_loss_function : torch.nn.modules.loss._Loss, default=None
The torch.nn.modules.loss._Loss instance for determining the reconstruction loss. If None, MSELoss is used.
Attributes
----------
encoder_network_ : torch.nn.Module
The probabilistic encoder network.
decoder_network_ : torch.nn.Module
The decoder network.
Examples
--------
>>> import numpy
>>> from anomaly_detectors.variational_autoencoder.VAE_anomaly_detector import VAEAnomalyDetector
>>> data = numpy.array([[0], [0.44], [0.45], [0.46], [1]])
>>> vae = VAEAnomalyDetector().fit(data)
>>> vae.score_samples(data)
array([0.42985, 0.76759, 0.21558, 0.5728 , 0.85177])
"""
LOG_VARIANCE_LOWER_LIMIT = -80
LOG_VARIANCE_UPPER_LIMIT = 80
PRECISION = 5
def __init__(
self,
batch_size: int = 128,
n_jobs_dataloader: int = 4,
n_epochs: int = 10,
device: str = 'cpu',
scorer: Callable = None,
learning_rate: float = 1e-4,
linear: bool = True,
n_hidden_features: Sequence[int] = None,
random_state: int = None,
latent_dimensions: int = 2,
n_draws_latent_distribution: int = 1,
softmax_for_final_decoder_layer: bool = False,
reconstruction_loss_function: _Loss = None):
super().__init__(
batch_size,
n_jobs_dataloader,
n_epochs,
device,
scorer,
learning_rate,
linear,
n_hidden_features,
random_state,
novelty=True,
latent_dimensions=latent_dimensions,
softmax_for_final_decoder_layer=softmax_for_final_decoder_layer,
reconstruction_loss_function=reconstruction_loss_function)
self.n_draws_latent_distribution = n_draws_latent_distribution
if self.reconstruction_loss_function is not None \
and self.reconstruction_loss_function.reduction != 'none':
raise ValueError('Invalid reduction for loss.')
@property
def offset_(self):
return self._offset_
@property
def _networks(self) -> Sequence[torch.nn.Module]:
return [self.encoder_network_, self.decoder_network_]
@property
def _reset_loss_func(self) -> Callable:
def reset_loss():
self._train_divergence_losses_epoch_ = []
self._train_reconstruction_losses_epoch_ = []
self._train_losses_epoch_ = []
self._validation_losses_epoch_ = []
return reset_loss
# noinspection PyPep8Naming
def score_samples(self, X: np.ndarray):
""" Return the anomaly score.
:param X : numpy.ndarray of shape (n_samples, n_features)
Set of samples to be scored, where n_samples is the number of samples and
n_features is the number of features
:return : numpy.ndarray with shape (n_samples,)
Array with positive scores.
Higher values indicate that an instance is more likely to be anomalous.
"""
X, _ = self._check_ready_for_prediction(X)
# noinspection PyTypeChecker
loader = self._get_data_loader(X, shuffle=False)
scores = []
self.encoder_network_.eval()
self.decoder_network_.eval()
with torch.no_grad():
for inputs in loader:
inputs = inputs.to(device=self.device)
mean_encoder, log_variance_encoder = self.encoder_network_(inputs)
z = self._sample(
mean_encoder.repeat_interleave(self.n_draws_latent_distribution, dim=0),
log_variance_encoder.repeat_interleave(self.n_draws_latent_distribution, dim=0))
reconstructed_samples = self.decoder_network_(z)
expected_reconstruction_loss = self._get_reconstruction_loss(
reconstructed_samples,
inputs.repeat_interleave(self.n_draws_latent_distribution, dim=0))
expected_reconstruction_loss = torch.reshape(
expected_reconstruction_loss,
(inputs.size()[0], self.n_draws_latent_distribution))
scores += expected_reconstruction_loss.mean(dim=1).cpu().data.numpy().tolist()
return np.array(scores).round(self.PRECISION)
def _get_reconstruction_loss(self, inputs: torch.Tensor, targets: torch.Tensor):
reconstruction_loss_function = self.reconstruction_loss_function \
if self.reconstruction_loss_function is not None \
else nn.MSELoss(reduction='none')
return reconstruction_loss_function(inputs, targets).mean(axis=1)
def _initialize_fitting(self, train_loader: DataLoader):
n_hidden_features_fallback = \
[self.n_features_in_ - math.floor((self.n_features_in_ - self.latent_dimensions) / 2)]
if self.random_state is not None:
torch.manual_seed(self.random_state)
self.encoder_network_ = MultivariateGaussianEncoder(
self.latent_dimensions,
self.n_features_in_,
self.n_hidden_features if self.n_hidden_features is not None else n_hidden_features_fallback,
self.linear)
self.decoder_network_ = nn.Sequential(nn.Linear(self.latent_dimensions, self.n_features_in_)) \
if self.linear \
else Decoder(self.latent_dimensions, self.n_features_in_, self.n_hidden_features, bias=False)
if self.softmax_for_final_decoder_layer:
self.decoder_network_.add_module('softmax', nn.Softmax(dim=1))
self._train_losses_epoch_ = []
self._train_divergence_losses_epoch_ = []
self._train_reconstruction_losses_epoch_ = []
self._validation_losses_epoch_ = []
self._optimizer_ = optim.Adam(
list(self.encoder_network_.parameters()) + list(self.decoder_network_.parameters()),
lr=self.learning_rate)
self._offset_ = 0
def _optimize_params(self, inputs: torch.Tensor):
kl_divergence, expected_reconstruction_errors = self._get_losses(inputs)
losses = kl_divergence + expected_reconstruction_errors
self._optimizer_.zero_grad()
losses.mean().backward()
self._optimizer_.step()
self._train_losses_epoch_ += losses.data.numpy().tolist()
self._train_reconstruction_losses_epoch_ += expected_reconstruction_errors.data.numpy().tolist()
self._train_divergence_losses_epoch_ += [kl_divergence.item()]
def _get_losses(self, inputs: torch.Tensor):
mean_encoder, log_variance_encoder = self.encoder_network_(inputs)
# cap values to prevent infinity values caused by exponentiation
log_variance_encoder = self._get_log_variance_with_capped_values(log_variance_encoder)
# Acc. to Géron, A. (Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:Concepts, tools
# and techniques to build intelligent systems (O’Reilly Media, 2019); p. 589),
# the divergence loss should be scaled, to ensure it has appropriate scale compared to the reconstruction loss.
kl_divergence = self._get_kl_divergence(mean_encoder, log_variance_encoder) / self.n_features_in_
z = self._reparametrize(mean_encoder, log_variance_encoder)
reconstructed = self.decoder_network_(z)
inputs_expected = inputs.repeat_interleave(self.n_draws_latent_distribution, dim=0)
expected_reconstruction_errors = self._get_reconstruction_loss(inputs_expected, reconstructed)
return kl_divergence, expected_reconstruction_errors
@staticmethod
def _get_log_variance_with_capped_values(log_variance_encoder: torch.Tensor):
log_variance_encoder[log_variance_encoder > VAEAnomalyDetector.LOG_VARIANCE_UPPER_LIMIT] = \
VAEAnomalyDetector.LOG_VARIANCE_UPPER_LIMIT
log_variance_encoder[log_variance_encoder < VAEAnomalyDetector.LOG_VARIANCE_LOWER_LIMIT] = \
VAEAnomalyDetector.LOG_VARIANCE_LOWER_LIMIT
return log_variance_encoder
@staticmethod
def _get_kl_divergence(mean: torch.Tensor, log_variance: torch.Tensor) -> torch.Tensor:
return torch.mean(
torch.mul(
-0.5,
torch.sum(1 + log_variance - mean.pow(2) - log_variance.exp(), dim=1)))
def _reparametrize(self, mean: torch.Tensor, log_variance: torch.Tensor) -> torch.Tensor:
standard_deviation = torch.exp(torch.mul(0.5, log_variance))
epsilon = torch.randn(
size=(mean.size()[0], self.n_draws_latent_distribution, self.latent_dimensions),
device=self.device)
return mean.repeat_interleave(self.n_draws_latent_distribution, dim=0) + \
torch.einsum('ij,ikj->ikj', standard_deviation, epsilon).flatten(end_dim=1)
def _sample(self, mean: torch.Tensor, log_variance: torch.Tensor) -> torch.Tensor:
log_variance = self._get_log_variance_with_capped_values(log_variance)
if self.random_state is not None:
samples = mean + log_variance.exp()
else:
covariance_matrix = torch.einsum('ij,jk->ijk', log_variance.exp(), torch.eye(log_variance.size()[1]))
distribution = MultivariateNormal(loc=mean, covariance_matrix=covariance_matrix)
samples = distribution.sample().to(self.device)
return samples
def _log_epoch_results(self, epoch: int, epoch_train_time: float):
mean_divergence_loss = np.array(self._train_divergence_losses_epoch_).mean()
mean_reconstruction_loss = np.array(self._train_reconstruction_losses_epoch_).mean()
mean_training_loss = np.array(self._train_losses_epoch_).mean()
metrics = OrderedDict([
('Training time', epoch_train_time),
('Training loss', mean_training_loss),
('Training divergence loss', mean_divergence_loss),
('Training reconstruction loss', mean_reconstruction_loss)])
if self._validation_losses_epoch_:
metrics['Validation loss'] = np.array(self._validation_losses_epoch_).mean()
mlflow.log_metrics(step=epoch, metrics=metrics)
print(f'Epoch {epoch}/{self.n_epochs},'
f' Epoch training time: {epoch_train_time},'
f' Loss: {mean_training_loss}')
def _update_validation_loss_epoch(self, epoch: int, inputs: torch.Tensor):
kl_divergence, expected_reconstruction_errors = self._get_losses(inputs)
losses = kl_divergence + expected_reconstruction_errors
self._validation_losses_epoch_ += losses.data.numpy().tolist()