-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolow_demo.py
168 lines (121 loc) · 6.13 KB
/
solow_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from datetime import datetime
import time
import csv
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from scipy.integrate import odeint
import occamnet.Bases as Bases
from occamnet.Losses import CrossEntropyLoss
from occamnet.Network import NetworkConstants
from occamnet.SparseSetters import SetNoSparse as SNS
def model(data, t):
k, y, s, n, delta, g_b, alpha = data
dydt = [s*y-k*(delta+g_b+n), alpha*y/k*(s*y-k*(delta+n+g_b)), 0.05, 0.05*n, 0, 0, 0]
return dydt
if __name__ == '__main__':
################ Generate data ################
size = 20
s = np.random.uniform(low=0.2, high=0.8, size=(size,))
n = np.random.uniform(low=0.05, high=0.1, size=(size,))
delta = np.random.uniform(low=0.05, high=0.1, size=(size,))
g_b = np.random.uniform(low=0.05, high=0.1, size=(size,))
alpha = np.random.uniform(low=0.01, high=0.5, size=(size,))
k0 = np.random.uniform(low=0.01, high=0.1, size=(size,))
y0 = k0**alpha
t = np.arange(30) # time points
# solve ODE
model_fit = [odeint(model, [k0[i], y0[i], s[i], delta[i], n[i], g_b[i], alpha[i]], t) for i in range(len(s))]
X = [torch.FloatTensor(xi)[:, [0, 1, 2, 3]] for xi in model_fit]
# Fit dk/dt (index 0)
Y = [torch.FloatTensor(np.diff(X[i][:, [0]], axis=0)[1:] - 0.5*np.diff(np.diff(X[i][:, [0]], axis=0), axis=0)) for i in range(len(X))]
X = [X[i][1:-1, :] for i in range(len(X))]
inputSize = 4 # Number of input variables in each individual dataset
outputSize = 1 # Number of output variables in each individual dataset
units = [np.array([1, -1]),np.array([1, -1]), np.array([0, 0]), np.array([0, 0]), np.array([1, -1])]
################ Initialize OccamNet ################
ensembleMode = True # Toggle ensemble learning
# Default hyperparameters
epochs = 2
batchesPerEpoch = 1
learningRate = 1
constantLearningRate = 0.05
decay = 1
temp = 10
endTemp = 10
sampleSize = 1000 # Number of functions to sample
# Regularization parameters
activationWeight = 0
constantWeight = 0
# Sweep parameters
sDev_sweep = [0.5]
top_sweep = [5]
equalization_sweep = [1]
# Activation layers
layers = [[Bases.Add(), Bases.Subtract(), Bases.Multiply(), Bases.Divide(), Bases.AddConstant(), Bases.MultiplyConstant(), Bases.Square(), Bases.PowerConstant(), Bases.Exp(), Bases.Log(), Bases.Sin(), Bases.Cos()],
[Bases.Add(), Bases.Subtract(), Bases.Multiply(), Bases.Divide(), Bases.AddConstant(), Bases.MultiplyConstant(), Bases.Square(), Bases.PowerConstant(), Bases.Exp(), Bases.Log(), Bases.Sin(), Bases.Cos()],
[Bases.Add(), Bases.Subtract(), Bases.Multiply(), Bases.Divide(), Bases.AddConstant(), Bases.MultiplyConstant(), Bases.Square(), Bases.PowerConstant(), Bases.Exp(), Bases.Log(), Bases.Sin(), Bases.Cos()]]
################ Training ################
file_name = "SolowDemo"
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S_%f")[:-3]
file_path = 'results/' + file_name + '_' + date_time + ".csv"
with open(file_path, 'a') as f:
writer = csv.writer(f)
header = ['wmse', 'mse_sDev', 'mse_median', 'expression', 'sDev', 'top', 'equalization', 'runtime']
writer.writerow(header)
for sDev in sDev_sweep:
for top in top_sweep:
for equalization in equalization_sweep:
print('Training with parameters: sDev={sDev}, top={top}, equalization={eq}'.format(
sDev=sDev,
top=top,
eq=equalization))
start = time.time()
loss = CrossEntropyLoss(sDev,
top,
anomWeight=0,
constantWeight=constantWeight,
activationWeight=activationWeight)
sparsifier = SNS()
n = NetworkConstants(inputSize,
layers,
outputSize,
sparsifier,
loss,
learningRate,
constantLearningRate,
temp,
endTemp,
equalization,
skipConnections = True)
n.setConstants([0 for j in range(n.totalConstants)])
train_function = n.trainFunction(epochs,
batchesPerEpoch,
sampleSize,
decay,
X,
Y,
useMultiprocessing = True,
numProcesses = 20,
ensemble=ensembleMode,
units=units)
### Evaluation ###
output = n.forwardFitConstants(train_function, X, Y, ensemble=True)
output = output.squeeze(1)
# Weighted MSE
MSELoss = nn.MSELoss()
losses = []
for curr_Y in Y:
curr_out, output = torch.split(output, [curr_Y.shape[0], output.shape[0]-curr_Y.shape[0]])
losses.append(MSELoss(curr_Y, curr_out).item())
weighted_mse = np.mean(losses)
std_mse = np.std(losses)
median_mse = np.median(losses)
expression = str(n.applySymbolicConstant(train_function))
end = time.time()
minutes = (end - start)/60
with open(file_path, 'a') as f:
writer = csv.writer(f)
data = [weighted_mse, std_mse, median_mse , expression, sDev, top, equalization, minutes]
writer.writerow(data)