-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsir_demo.py
160 lines (116 loc) · 5.12 KB
/
sir_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
from datetime import datetime
import time
import csv
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from scipy.integrate import odeint
import occamnet.Bases as Bases
from occamnet.Losses import CrossEntropyLoss
from occamnet.Network import NetworkConstants
from occamnet.SparseSetters import SetNoSparse as SNS
parser = argparse.ArgumentParser()
parser.add_argument("--target_var", choices={"s", "i", "r"}, default='s',
help="Target data to be fitted (one of 's', 'i', or 'r')")
args = parser.parse_args()
def model(y,t):
s,i,r = y
dydt = [-0.5*s*i, 0.5*s*i-0.2*i, 0.2*i]
return dydt
if __name__ == '__main__':
################ Generate data ################
X0 = [1, 0.001, 0] # initial conditions
t = np.arange(60) # time points
# solve ODE
X = odeint(model,X0,t)
Y = torch.tensor(np.diff(X[1:, ], axis=0) - 0.5*np.diff(np.diff(X, axis=0), axis=0),
dtype=torch.float)
X = torch.tensor(X[1:-1, [0,1]], dtype=torch.float) # Use s and i as input variables
if args.target_var == 's':
Y = Y[:, [0]] # Fit only s
elif args.target_var == 'i':
Y = Y[:, [1]] # Fit only i
else:
Y = Y[:, [2]] # Fit only i
inputSize = 2 # Number of input variables in each individual dataset
outputSize = 1 # Number of output variables in each individual dataset
################ Initialize OccamNet ################
ensembleMode = False # Toggle ensemble learning
# Default hyperparameters
epochs = 1000
batchesPerEpoch = 1
learningRate = 1
constantLearningRate = 0.05
decay = 1
temp = 10
endTemp = 10
sampleSize = 100 # Number of functions to sample
# Regularization parameters
activationWeight = 0
constantWeight = 0
# Sweep parameters
sDev_sweep = [5]
top_sweep = [1]
equalization_sweep = [5]
# Activation layers
layers = [
[Bases.Add(), Bases.Subtract(), Bases.Multiply(), Bases.Divide(), Bases.AddConstant(), Bases.MultiplyConstant()],
[Bases.Add(), Bases.Subtract(), Bases.Multiply(), Bases.Divide(), Bases.AddConstant(), Bases.MultiplyConstant()],
[Bases.Add(), Bases.Subtract(), Bases.Multiply(), Bases.Divide(), Bases.AddConstant(), Bases.MultiplyConstant()]
]
################ Training ################
file_name = "SIRDemo_" + args.target_var
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S_%f")[:-3]
file_path = 'results/' + file_name + '_' + date_time + ".csv"
with open(file_path, 'w') as f:
writer = csv.writer(f)
header = ['mse', 'expression', 'sDev', 'top', 'equalization', 'runtime']
writer.writerow(header)
for sDev in sDev_sweep:
for top in top_sweep:
for equalization in equalization_sweep:
print('Training with parameters: sDev={sDev}, top={top}, equalization={eq}'.format(
sDev=sDev,
top=top,
eq=equalization))
start = time.time()
loss = CrossEntropyLoss(sDev,
top,
anomWeight=0,
constantWeight=constantWeight,
activationWeight=activationWeight)
sparsifier = SNS()
n = NetworkConstants(inputSize,
layers,
outputSize,
sparsifier,
loss,
learningRate,
constantLearningRate,
temp,
endTemp,
equalization,
skipConnections = True)
n.setConstants([0 for j in range(n.totalConstants)])
train_function = n.trainFunction(epochs,
batchesPerEpoch,
sampleSize,
decay,
X,
Y,
useMultiprocessing = True,
numProcesses = 20,
ensemble=ensembleMode)
### Evaluation ###
output = n.forwardFitConstants(train_function, X, Y, ensemble=ensembleMode)
MSELoss = nn.MSELoss()
train_mse = MSELoss(Y, output[:,0]).item()
expression = str(n.applySymbolicConstant(train_function))
end = time.time()
minutes = (end - start)/60
with open(file_path, 'a') as f:
writer = csv.writer(f)
data = [train_mse, expression, sDev, top, equalization, minutes]
writer.writerow(data)