forked from ClownsharkBatwing/RES4LYF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrk_sampler.py
757 lines (586 loc) · 46.6 KB
/
rk_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import torch
import torch.nn.functional as F
import gc
import copy
from tqdm.auto import trange
from .noise_sigmas_timesteps_scaling import get_res4lyf_step_with_model, get_res4lyf_half_step3
from .rk_method import RK_Method
from .rk_guide_func import LatentGuide, NoiseStepHandlerOSDE, handle_tiled_etc_noise_steps, get_guide_epsilon_substep
from .latents import initialize_or_scale
from .helper import get_extra_options_kv, extra_options_flag, get_extra_options_list, is_RF_model
from typing import Tuple, Dict
# from .sigmas import get_sigmas
# from .res4lyf import log
PRINT_DEBUG = False
#Debugging code:
# from .memory_profiler import AutoMemoryTracker, print_tensors, get_module_size, get_tensor_size
import hashlib
def debug_print_tensor_hash(tensor, hash_fn_name="md5") -> None:
if hash_fn_name == "sha256":
print(hashlib.sha256(tensor.cpu().numpy()).hexdigest())
else:
print(hashlib.md5(tensor.cpu().numpy()).hexdigest())
def debug_cuda_cleanup(doSync=False, doEmpty=False, doGC=False) -> None:
if doSync:
torch.cuda.synchronize()
if doEmpty:
torch.cuda.empty_cache()
if doGC:
import gc
gc.collect()
# End debugging code
def prepare_sigmas(model, sigmas):
if sigmas[0] == 0.0: #remove padding used to prevent comfy from adding noise to the latent (for unsampling, etc.)
UNSAMPLE = True
sigmas = sigmas[1:-1]
else:
UNSAMPLE = False
if hasattr(model, "sigmas"):
model.sigmas = sigmas
return sigmas, UNSAMPLE
def prepare_step_to_sigma_zero(rk, irk, rk_type, irk_type, model, x, extra_options, alpha, k, noise_sampler_type, cfg_cw=1.0, **extra_args) -> Tuple[RK_Method, RK_Method, str, str, float, float, Dict]:
rk_type_final_step = f"ralston_{rk_type[-2:]}" if rk_type[-2:] in {"2s", "3s"} else "ralston_3s"
rk_type_final_step = f"deis_2m" if rk_type[-2:] in {"2m", "3m", "4m"} else rk_type_final_step
rk_type_final_step = f"euler" if rk_type in {"ddim"} else rk_type_final_step
rk_type_final_step = get_extra_options_kv("rk_type_final_step", rk_type_final_step, extra_options)
rk = RK_Method.create(model, rk_type_final_step, x.device)
rk.init_noise_sampler(x, torch.initial_seed() + 1, noise_sampler_type, alpha=alpha, k=k)
extra_args = rk.init_cfg_channelwise(x, cfg_cw, **extra_args)
if any(element >= 1 for element in irk.c):
irk_type_final_step = f"gauss-legendre_{rk_type[-2:]}" if rk_type[-2:] in {"2s", "3s", "4s", "5s"} else "gauss-legendre_2s"
irk_type_final_step = f"deis_2m" if rk_type[-2:] in {"2m", "3m", "4m"} else irk_type_final_step
irk_type_final_step = get_extra_options_kv("irk_type_final_step", irk_type_final_step, extra_options)
irk = RK_Method.create(model, irk_type_final_step, x.device)
irk.init_noise_sampler(x, torch.initial_seed() + 100, noise_sampler_type, alpha=alpha, k=k)
extra_args = irk.init_cfg_channelwise(x, cfg_cw, **extra_args)
else:
irk_type_final_step = irk_type
eta, eta_var = 0, 0
return rk, irk, rk_type_final_step, irk_type_final_step, eta, eta_var, extra_args
@torch.no_grad()
def sample_rk(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_2m", implicit_sampler_name="explicit_full",
sigma_fn_formula="", t_fn_formula="",
eta=0.0, eta_var=0.0, s_noise=1., d_noise=1., alpha=-1.0, k=1.0, scale=0.1, c1=0.0, c2=0.5, c3=1.0, implicit_steps=0, reverse_weight=0.0,
latent_guide=None, latent_guide_inv=None, latent_guide_weight=0.0, latent_guide_weight_inv=0.0, latent_guide_weights=None, latent_guide_weights_inv=None, guide_mode="",
GARBAGE_COLLECT=False, mask=None, mask_inv=None, LGW_MASK_RESCALE_MIN=True, sigmas_override=None, unsample_resample_scales=None,regional_conditioning_weights=None, sde_noise=[],
extra_options="",
etas=None, s_noises=None, momentums=None, guides=None, cfgpp=0.0, cfg_cw = 1.0,regional_conditioning_floors=None, frame_weights_grp=None, eta_substep=0.0, noise_mode_sde_substep="hard", guide_cossim_cutoff_=1.0, guide_bkg_cossim_cutoff_=1.0,
) -> torch.Tensor:
extra_args = {} if extra_args is None else extra_args
# tracker = AutoMemoryTracker(model.inner_model.inner_model.diffusion_model, 1)
noise_cossim_iterations = int(get_extra_options_kv("noise_cossim_iterations", "1", extra_options))
noise_substep_cossim_iterations = int(get_extra_options_kv("noise_substep_cossim_iterations", "1", extra_options))
NOISE_COSSIM_MODE = get_extra_options_kv("noise_cossim_mode", "orthogonal", extra_options)
NOISE_COSSIM_SOURCE = get_extra_options_kv("noise_cossim_source", "x_eps_data_xinit_orthogonal", extra_options)
NOISE_SUBSTEP_COSSIM_MODE = get_extra_options_kv("noise_substep_cossim_mode", "orthogonal", extra_options)
NOISE_SUBSTEP_COSSIM_SOURCE = get_extra_options_kv("noise_substep_cossim_source", "x_eps_data_xinit_orthogonal", extra_options)
SUBSTEP_SKIP_LAST = get_extra_options_kv("substep_skip_last", "false", extra_options) == "true"
noise_cossim_tile_size = int(get_extra_options_kv("noise_cossim_tile", "2", extra_options))
noise_substep_cossim_tile_size = int(get_extra_options_kv("noise_substep_cossim_tile", "2", extra_options))
substep_eta = float(get_extra_options_kv("substep_eta", str(eta_substep), extra_options))
substep_noise_scaling = float(get_extra_options_kv("substep_noise_scaling", "0.0", extra_options))
substep_noise_mode = get_extra_options_kv("substep_noise_mode", noise_mode_sde_substep, extra_options)
substep_eta_start_step = int(get_extra_options_kv("substep_noise_start_step", "-1", extra_options))
substep_eta_final_step = int(get_extra_options_kv("substep_noise_final_step", "-1", extra_options))
noise_substep_cossim_max_iter = int(get_extra_options_kv("noise_substep_cossim_max_iter", "5", extra_options))
noise_cossim_max_iter = int(get_extra_options_kv("noise_cossim_max_iter", "5", extra_options))
noise_substep_cossim_max_score = float(get_extra_options_kv("noise_substep_cossim_max_score", "1e-7", extra_options))
noise_cossim_max_score = float(get_extra_options_kv("noise_cossim_max_score", "1e-7", extra_options))
c1 = c1_ = float(get_extra_options_kv("c1", str(c1), extra_options))
c2 = c2_ = float(get_extra_options_kv("c2", str(c2), extra_options))
c3 = c3_ = float(get_extra_options_kv("c3", str(c3), extra_options))
# Flags
noise_cossim_flag = extra_options_flag("noise_cossim", extra_options)
noise_substep_cossim_flag = extra_options_flag("noise_substep_cossim", extra_options)
fast_implicit_guess_flag = extra_options_flag("fast_implicit_guess", extra_options)
fast_implicit_guess_use_guide_flag = extra_options_flag("fast_implicit_guess_use_guide", extra_options)
eps_preview_flag = extra_options_flag("eps_preview", extra_options)
disable_rough_noise_flag = extra_options_flag("disable_rough_noise", extra_options)
substep_eta_c_row_plus_one_flag = extra_options_flag("substep_eta_c_row_plus_one", extra_options)
rk_linear_straight_flag = extra_options_flag("rk_linear_straight", extra_options)
# Debugging code:
cuda_sync_a_flag = extra_options_flag("cuda_sync_a", extra_options)
cuda_empty_a_flag = extra_options_flag("cuda_empty_a", extra_options)
cuda_gc_a_flag = extra_options_flag("cuda_gc_a", extra_options)
cuda_sync_b_flag = extra_options_flag("cuda_sync_b", extra_options)
cuda_empty_b_flag = extra_options_flag("cuda_empty_b", extra_options)
cuda_gc_b_flag = extra_options_flag("cuda_gc_b", extra_options)
# End debugging code
guide_skip_steps = int(get_extra_options_kv("guide_skip_steps", 0, extra_options))
cfg_cw = float(get_extra_options_kv("cfg_cw", str(cfg_cw), extra_options))
MODEL_SAMPLING = model.inner_model.inner_model.model_sampling
s_in, s_one = x.new_ones([x.shape[0]]), x.new_ones([1])
default_dtype = getattr(torch, get_extra_options_kv("default_dtype", "float64", extra_options), torch.float64)
max_steps=10000
if sigmas_override is not None:
sigmas = sigmas_override.clone()
sigmas = sigmas.clone() * d_noise
sigmas, UNSAMPLE = prepare_sigmas(model, sigmas)
SDE_NOISE_EXTERNAL = False
if sde_noise is not None:
if len(sde_noise) > 0 and sigmas[1] > sigmas[2]:
SDE_NOISE_EXTERNAL = True
sigma_up_total = torch.zeros_like(sigmas[0])
for i in range(len(sde_noise)-1):
sigma_up_total += sigmas[i+1]
eta = eta / sigma_up_total
irk_type = implicit_sampler_name
if implicit_sampler_name in ("explicit_full", "explicit_diagonal", "none"):
irk_type = rk_type
rk_type = "euler" if implicit_steps > 0 and implicit_sampler_name == "explicit_full" else rk_type
rk_type = get_extra_options_kv("rk_type", rk_type, extra_options)
print("rk_type: ", rk_type)
rk = RK_Method.create(model, rk_type, x.device)
irk = RK_Method.create(model, irk_type, x.device)
extra_args = irk.init_cfg_channelwise(x, cfg_cw, **extra_args)
extra_args = rk.init_cfg_channelwise(x, cfg_cw, **extra_args)
rk. init_noise_sampler(x, noise_seed, noise_sampler_type, alpha=alpha, k=k)
irk.init_noise_sampler(x, noise_seed+100, noise_sampler_type, alpha=alpha, k=k)
frame_weights, frame_weights_inv = None, None
if frame_weights_grp is not None and frame_weights_grp[0] is not None:
frame_weights = initialize_or_scale(frame_weights_grp[0], 1.0, max_steps).to(default_dtype)
frame_weights = F.pad(frame_weights, (0, max_steps), value=0.0)
if frame_weights_grp is not None and frame_weights_grp[1] is not None:
frame_weights_inv = initialize_or_scale(frame_weights_grp[1], 1.0, max_steps).to(default_dtype)
frame_weights_inv = F.pad(frame_weights_inv, (0, max_steps), value=0.0)
frame_weights_grp = (frame_weights, frame_weights_inv)
LG = LatentGuide(guides, x, model, sigmas, UNSAMPLE, LGW_MASK_RESCALE_MIN, extra_options)
x = LG.init_guides(x, rk.noise_sampler)
gc.collect()
y0, y0_inv = LG.y0, LG.y0_inv
# lgw, lgw_inv = LG.lgw, LG.lgw_inv
# guide_mode = LG.guide_mode
denoised, denoised_prev, eps, eps_prev = [torch.zeros_like(x) for _ in range(4)]
prev_noises = []
x_init = x.clone()
x_, data_, eps_ = None, None, None
for step in trange(len(sigmas)-1, disable=disable):
sigma, sigma_next = sigmas[step], sigmas[step+1]
unsample_resample_scale = float(unsample_resample_scales[step]) if unsample_resample_scales is not None else None
if regional_conditioning_weights is not None:
extra_args['model_options']['transformer_options']['regional_conditioning_weight'] = regional_conditioning_weights[step]
extra_args['model_options']['transformer_options']['regional_conditioning_floor'] = regional_conditioning_floors [step]
else:
extra_args['model_options']['transformer_options']['regional_conditioning_weight'] = 0.0
extra_args['model_options']['transformer_options']['regional_conditioning_floor'] = 0.0
eta = eta_var = etas[step] if etas is not None else eta
s_noise = s_noises[step] if s_noises is not None else s_noise
if step > 0:
del s_
del s_irk
del s_irk_rk
if sigma_next == 0:
rk, irk, rk_type, irk_type, eta, eta_var, extra_args = prepare_step_to_sigma_zero(rk, irk, rk_type, irk_type, model, x, extra_options, alpha, k, noise_sampler_type, cfg_cw=cfg_cw, **extra_args)
sigma_up, sigma, sigma_down, alpha_ratio = get_res4lyf_step_with_model(model, sigma, sigma_next, eta, noise_mode)
h = rk.h_fn(sigma_down, sigma)
h_irk = irk.h_fn(sigma_down, sigma)
c2, c3 = get_res4lyf_half_step3(sigma, sigma_down, c2_, c3_, t_fn=rk.t_fn, sigma_fn=rk.sigma_fn, t_fn_formula=t_fn_formula, sigma_fn_formula=sigma_fn_formula)
rk. set_coeff(rk_type, h, c1, c2, c3, step, sigmas, sigma, sigma_down, extra_options)
irk.set_coeff(irk_type, h_irk, c1, c2, c3, step, sigmas, sigma, sigma_down, extra_options)
s_ = [( rk.sigma_fn( rk.t_fn(sigma) + h*c_)) * s_one for c_ in rk.c]
s_irk_rk = [( rk.sigma_fn( rk.t_fn(sigma) + h*c_)) * s_one for c_ in irk.c]
s_irk = [( irk.sigma_fn(irk.t_fn(sigma) + h_irk*c_)) * s_one for c_ in irk.c]
if step == 0 or step == guide_skip_steps:
x_, data_, eps_ = (torch.zeros(max(rk.rows, irk.rows) + 1, *x.shape, dtype=x.dtype, device=x.device) for step in range(3))
sde_noise_t = None
if SDE_NOISE_EXTERNAL:
if step >= len(sde_noise):
SDE_NOISE_EXTERNAL=False
else:
sde_noise_t = sde_noise[step]
x_prenoise = x.clone()
x_[0] = x
if sigma_up > 0:
x_[0] = rk.add_noise_pre(x, sigma_up, sigma, sigma_next, alpha_ratio, s_noise, noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t) #y0, lgw, sigma_down are currently unused
x_0 = x_[0].clone()
for ms in range(rk.multistep_stages):
if RK_Method.is_exponential(rk_type):
eps_ [rk.multistep_stages - ms] = -(x_0 - data_ [rk.multistep_stages - ms])
else:
eps_ [rk.multistep_stages - ms] = (x_0 - data_ [rk.multistep_stages - ms]) / sigma
if implicit_steps == 0 or implicit_sampler_name == "explicit_diagonal":
for row in range(rk.rows - rk.multistep_stages):
for exim_iter in range(implicit_steps+1):
sub_sigma_up, sub_sigma, sub_sigma_next, sub_sigma_down, sub_alpha_ratio = 0, s_[row], s_[row+1], s_[row+1], 1
if (substep_eta_final_step < 0 and step == len(sigmas)-1+substep_eta_final_step) or (substep_eta_final_step > 0 and step > substep_eta_final_step):
sub_sigma_up, sub_sigma, sub_sigma_down, sub_alpha_ratio = 0, s_[row], s_[row+1], 1
edsef=1
if extra_options_flag("explicit_diagonal_eta_substep_factors", extra_options):
value_str = get_extra_options_list("explicit_diagonal_eta_substep_factors", "", extra_options)
float_list = [float(item.strip()) for item in value_str.split(',') if item.strip()]
edsef = float_list[exim_iter]
nsef = 1
if extra_options_flag("noise_eta_substep_factors", extra_options):
value_str = get_extra_options_list("noise_eta_substep_factors", "", extra_options)
nsef_list = [float(item.strip()) for item in value_str.split(',') if item.strip()]
nsef = nsef_list[row]
if exim_iter > 0 and rk_type.endswith("m") and step >= int(rk_type[-2]):
sub_sigma_up, sub_sigma, sub_sigma_down, sub_alpha_ratio = get_res4lyf_step_with_model(model, sigma, sigma_next, substep_eta*edsef*nsef, substep_noise_mode)
sub_sigma_next = sigma_next
if (row > 0 and not disable_rough_noise_flag): # and s_[row-1] >= s_[row]:
sub_sigma_up, sub_sigma, sub_sigma_down, sub_alpha_ratio = get_res4lyf_step_with_model(model, s_[row-1], s_[row], substep_eta*edsef*nsef, substep_noise_mode)
sub_sigma_next = s_[row]
if row > 0 and substep_eta*edsef*nsef > 0 and row < rk.rows and ((SUBSTEP_SKIP_LAST == False) or (row < rk.rows - rk.multistep_stages - 1)) and (sub_sigma_down > 0) and sigma_next > 0:
substep_noise_scaling_ratio = s_[row+1]/sub_sigma_down
eps_[row-1] *= 1 + substep_noise_scaling*(substep_noise_scaling_ratio-1)
h_new = h.clone()
if (rk_type.endswith("m") and step >= int(rk_type[-2]) and sub_sigma_up > 0) or (row > 0 and sub_sigma_up > 0):
if substep_eta_c_row_plus_one_flag:
h_new = (rk.h_fn(sub_sigma_down, sigma) / rk.c[row+1])[0]
else:
if exim_iter > 0 and rk_type.endswith("m") and step >= int(rk_type[-2]):
c_val = -rk.h_prev/h
h_new = (rk.h_fn(sub_sigma_down, sigma)) / c_val
else:
h_new = (rk.h_fn(sub_sigma_down, sigma) / rk.c[row])[0] #used to be rk.c[row+1]
s_new_ = [( rk.sigma_fn( rk.t_fn(sigma) + h_new*c_)) * s_one for c_ in rk.c]
"""print("step, row: ", step, row)
print("h, h_new: ", h.item(), h_new.item())
print("s_: ", s_)
print("s_new_: ", s_new_)
print("sub_sigma_up, sub_sigma, sub_sigma_next, sub_sigma_down, sub_alpha_ratio: ", sub_sigma_up.item(), sub_sigma.item(), sub_sigma_next.item(), sub_sigma_down.item(), sub_alpha_ratio.item())"""
# UPDATE
#print("UPDATE: step,row,h_new: ", step, row, h_new.item())
x_[row+1] = x_0 + h_new * rk.a_k_sum(eps_, row)
if row > 0:
if PRINT_DEBUG:
print("A: step,row,h,h_new: \n", step, row, round(float(h.item()),3), round(float(h_new.item()),3))
#print("step, row, exim_iter: ", step, row, exim_iter)
# NOISE ADD
if is_RF_model(model) == True or noise_mode != "hard":
if (exim_iter < implicit_steps and sub_sigma_up > 0) or ((row > 0) and (sub_sigma_up > 0) and ((SUBSTEP_SKIP_LAST == False) or (row < rk.rows - rk.multistep_stages - 1))):
if PRINT_DEBUG:
print("A: sub_sigma_up, sub_sigma, sub_sigma_next, sub_sigma_down, sub_alpha_ratio: \n", round(float(sub_sigma_up),3), round(float(sub_sigma),3), round(float(sub_sigma_next),3), round(float(sub_sigma_down),3), round(float(sub_alpha_ratio),3))
data_tmp = denoised_prev if data_[row-1].sum() == 0 else data_[row-1]
eps_tmp = eps_prev if eps_[row-1].sum() == 0 else eps_ [row-1]
Osde = NoiseStepHandlerOSDE(x_[row+1], eps_tmp, data_tmp, x_init, y0, y0_inv)
if Osde.check_cossim_source(NOISE_SUBSTEP_COSSIM_SOURCE):
noise = rk.noise_sampler(sigma=sub_sigma, sigma_next=sub_sigma_next)
noise_osde = Osde.get_ortho_noise(noise, prev_noises, max_iter=noise_substep_cossim_max_iter, max_score=noise_substep_cossim_max_score, NOISE_COSSIM_SOURCE=NOISE_SUBSTEP_COSSIM_SOURCE, extra_options=extra_options)
x_[row+1] = sub_alpha_ratio * x_[row+1] + sub_sigma_up * noise_osde * s_noise
elif noise_substep_cossim_flag:
x_[row+1] = handle_tiled_etc_noise_steps(x_0, x_[row+1], x_prenoise, x_init, eps_tmp, data_tmp, y0, y0_inv, row, rk_type, rk, sub_sigma_up, s_[row-1], s_[row], sub_alpha_ratio, s_noise, substep_noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t,
NOISE_SUBSTEP_COSSIM_SOURCE, NOISE_SUBSTEP_COSSIM_MODE, noise_substep_cossim_tile_size, noise_substep_cossim_iterations, extra_options)
else:
x_[row+1] = rk.add_noise_post(x_[row+1], sub_sigma_up, sub_sigma, sub_sigma_next, sub_alpha_ratio, s_noise, substep_noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t)
# MODEL CALL
debug_cuda_cleanup(cuda_sync_a_flag, cuda_empty_a_flag, cuda_gc_a_flag)
if step < guide_skip_steps:
eps_row, eps_row_inv = get_guide_epsilon_substep(x_0, x_, y0, y0_inv, s_, row, rk_type)
eps_[row] = LG.mask * eps_row + (LG.mask_inv) * eps_row_inv
else:
if implicit_steps == 0 or row > 0 or (row == 0 and not extra_options_flag("explicit_diagonal_implicit_predictor", extra_options)):
# tracker.track_step("pre_model",step, sub_step=row)
eps_[row], data_[row] = rk(x_0, x_[row+1], s_[row], h, **extra_args)
# tracker.track_step("post_model",step, sub_step=row)
#print("exim: ", step, row, exim_iter)
else:
if extra_options_flag("explicit_diagonal_implicit_predictor_disable_noise", extra_options):
sub_sigma_up, sub_sigma_down, sub_alpha_ratio = sub_sigma_up*0, sub_sigma_next, sub_alpha_ratio/sub_alpha_ratio
eps_[row], data_[row] = rk(x_0, x_[row+1], s_[row], h, **extra_args)
eps_, x_ = LG.process_guides_substep(x_0, x_, eps_, data_, row, step, sigma, sigma_next, sigma_down, s_, unsample_resample_scale, rk, rk_type, extra_options, frame_weights_grp)
h_mini = rk.h_fn(sub_sigma_down, sub_sigma)
x_[row+1] = x_0 + h_mini * eps_[row]
Osde = NoiseStepHandlerOSDE(x_[row+1], eps_[row], data_[row], x_init, y0, y0_inv)
if Osde.check_cossim_source(NOISE_SUBSTEP_COSSIM_SOURCE):
noise = rk.noise_sampler(sigma=sub_sigma, sigma_next=sub_sigma_next)
noise_osde = Osde.get_ortho_noise(noise, prev_noises, max_iter=noise_substep_cossim_max_iter, max_score=noise_substep_cossim_max_score, NOISE_COSSIM_SOURCE=NOISE_SUBSTEP_COSSIM_SOURCE)
x_[row+1] = sub_alpha_ratio * x_[row+1] + sub_sigma_up * noise_osde * s_noise
else:
x_[row+1] = rk.add_noise_post(x_[row+1], sub_sigma_up, sub_sigma, sub_sigma_next, sub_alpha_ratio, s_noise, substep_noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t)
for inner_exim_iter in range(implicit_steps): # implicit euler update to find Yn+1
#print("inner_exim: ", step, row, inner_exim_iter)
eps_[row], data_[row] = rk(x_0, x_[row+1], s_[row+1], h, **extra_args)
eps_, x_ = LG.process_guides_substep(x_0, x_, eps_, data_, row, step, sigma, sigma_next, sigma_down, s_, unsample_resample_scale, rk, rk_type, extra_options, frame_weights_grp)
x_[row+1] = x_0 + h_mini * eps_[row]
Osde = NoiseStepHandlerOSDE(x_[row+1], eps_[row], data_[row], x_init, y0, y0_inv)
if Osde.check_cossim_source(NOISE_SUBSTEP_COSSIM_SOURCE):
noise = rk.noise_sampler(sigma=sub_sigma, sigma_next=sub_sigma_next)
noise_osde = Osde.get_ortho_noise(noise, prev_noises, max_iter=noise_substep_cossim_max_iter, max_score=noise_substep_cossim_max_score, NOISE_COSSIM_SOURCE=NOISE_SUBSTEP_COSSIM_SOURCE)
x_[row+1] = sub_alpha_ratio * x_[row+1] + sub_sigma_up * noise_osde * s_noise
else:
x_[row+1] = rk.add_noise_post(x_[row+1], sub_sigma_up, sub_sigma, sub_sigma_next, sub_alpha_ratio, s_noise, substep_noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t)
if rk_linear_straight_flag:
eps_[row] = (x_0 - data_[row]) / sigma
if sub_sigma_up > 0 and not RK_Method.is_exponential(rk_type):
eps_[row] = (x_0 - data_[row]) / sigma
debug_cuda_cleanup(cuda_sync_b_flag, cuda_empty_b_flag, cuda_gc_b_flag)
# GUIDES
if (LG.guide_mode != "none") and (LG.guide_mode != ""):
eps_row_tmp, x_row_tmp = eps_[row].clone(), x_[row+1].clone()
eps_, x_ = LG.process_guides_substep(x_0, x_, eps_, data_, row, step, sigma, sigma_next, sigma_down, s_, unsample_resample_scale, rk, rk_type, extra_options, frame_weights_grp)
if extra_options_flag("explicit_diagonal_eps_proj_factors", extra_options):
value_str = get_extra_options_list("explicit_diagonal_eps_proj_factors", "", extra_options)
float_list = [float(item.strip()) for item in value_str.split(',') if item.strip()]
eps_[row] = (float_list[exim_iter]) * eps_[row] + (1-float_list[exim_iter]) * eps_row_tmp
x_[row+1] = (float_list[exim_iter]) * x_[row+1] + (1-float_list[exim_iter]) * x_row_tmp
if row > 0 and exim_iter <= implicit_steps and implicit_steps > 0:
eps_[row-1] = eps_[row]
if implicit_steps > 0 and row == 0:
break
if PRINT_DEBUG:
print("B: step,h,h_new: \n", step, round(float(h.item()),3), round(float(h_new.item()),3))
print("B: sub_sigma_up, sub_sigma, sub_sigma_next, sub_sigma_down, sub_alpha_ratio: \n", round(float(sub_sigma_up),3), round(float(sub_sigma),3), round(float(sub_sigma_next),3), round(float(sub_sigma_down),3), round(float(sub_alpha_ratio),3))
x = x_0 + h * rk.b_k_sum(eps_, 0)
denoised = x_0 + ((sigma / (sigma - sigma_down)) * h) * rk.b_k_sum(eps_, 0)
eps = x - denoised
x = LG.process_guides_poststep(x, denoised, eps, step, extra_options)
# DIAGONALLY IMPLICIT
elif implicit_sampler_name=="explicit_diagonal_alt" or any(irk_type.startswith(prefix) for prefix in {"crouzeix", "irk_exp_diag", "pareschi_russo", "kraaijevanger_spijker", "qin_zhang",}):
s_irk = [torch.full_like(s_irk[0], sigma.item())] + s_irk
for row in range(irk.rows - irk.multistep_stages):
sub_sigma_up, sub_sigma, sub_sigma_next, sub_sigma_down, sub_alpha_ratio = 0.0, s_irk[row], s_irk[row+1], s_irk[row+1], 1.0
if irk.c[row] > 0:
sub_sigma_up, sub_sigma, sub_sigma_down, sub_alpha_ratio = get_res4lyf_step_with_model(model, s_irk[row], s_irk[row+1], substep_eta, substep_noise_mode)
if not extra_options_flag("diagonal_implicit_skip_initial", extra_options):
# MODEL CALL
eps_[row], data_[row] = irk(x_0, x_[row], s_irk[row], h_irk, **extra_args)
# GUIDES
eps_, x_ = LG.process_guides_substep(x_0, x_, eps_, data_, row, step, sigma, sigma_next, sigma_down, s_irk, unsample_resample_scale, irk, irk_type, extra_options, frame_weights_grp)
for diag_iter in range(implicit_steps):
h_new_irk = h.clone()
if irk.c[row] > 0:
h_new_irk = (irk.h_fn(sub_sigma_down, sigma) / irk.c[row])[0]
# UPDATE
x_[row+1] = x_0 + h_new_irk * irk.a_k_sum(eps_, row)
# NOISE ADD
if is_RF_model(model) == True or (is_RF_model(model) == False and noise_mode != "hard"):
if (row > 0) and (sub_sigma_up > 0) and ((SUBSTEP_SKIP_LAST == False) or (row < irk.rows - irk.multistep_stages - 1)):
data_tmp = denoised_prev if data_[row-1].sum() == 0 else data_[row-1]
eps_tmp = eps_prev if eps_[row-1].sum() == 0 else eps_ [row-1]
Osde = NoiseStepHandlerOSDE(x_[row+1], eps_tmp, data_tmp, x_init, y0, y0_inv)
if Osde.check_cossim_source(NOISE_SUBSTEP_COSSIM_SOURCE):
noise = irk.noise_sampler(sigma=sub_sigma, sigma_next=sub_sigma_next)
noise_osde = Osde.get_ortho_noise(noise, prev_noises, max_iter=noise_substep_cossim_max_iter, max_score=noise_substep_cossim_max_score, NOISE_COSSIM_SOURCE=NOISE_SUBSTEP_COSSIM_SOURCE, extra_options=extra_options)
x_[row+1] = sub_alpha_ratio * x_[row+1] + sub_sigma_up * noise_osde * s_noise
elif extra_options_flag("noise_substep_cossim", extra_options):
x_[row+1] = handle_tiled_etc_noise_steps(x_0, x_[row+1], x_prenoise, x_init, eps_tmp, data_tmp, y0, y0_inv, row,
irk_type, irk, sub_sigma_up, s_irk[row-1], s_irk[row], sub_alpha_ratio, s_noise, substep_noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t,
NOISE_SUBSTEP_COSSIM_SOURCE, NOISE_SUBSTEP_COSSIM_MODE, noise_substep_cossim_tile_size, noise_substep_cossim_iterations,
extra_options)
else:
x_[row+1] = irk.add_noise_post(x_[row+1], sub_sigma_up, sub_sigma, sub_sigma_next, sub_alpha_ratio, s_noise, substep_noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t)
# MODEL CALL
eps_[row], data_[row] = irk(x_0, x_[row+1], s_irk[row+1], h_irk, **extra_args)
if sub_sigma_up > 0 and not RK_Method.is_exponential(irk_type):
eps_[row] = (x_0 - data_[row]) / sigma
# GUIDES
eps_, x_ = LG.process_guides_substep(x_0, x_, eps_, data_, row, step, sigma, sigma_next, sigma_down, s_irk, unsample_resample_scale, irk, irk_type, extra_options, frame_weights_grp)
x = x_0 + h_irk * irk.b_k_sum(eps_, 0)
denoised = x_0 + (sigma / (sigma - sigma_down)) * h_irk * irk.b_k_sum(eps_, 0)
eps = x - denoised
x = LG.process_guides_poststep(x, denoised, eps, step, extra_options)
# FULLY IMPLICIT
else:
s2 = s_irk_rk[:]
s2.append(sigma.unsqueeze(dim=0))
s_all = torch.sort(torch.stack(s2, dim=0).squeeze(dim=1).unique(), descending=True)[0]
sigmas_and = torch.cat( (sigmas[0:step], s_all), dim=0)
data_[0].zero_()
eps_ [0].zero_()
eps_list = []
if fast_implicit_guess_flag:
if denoised.sum() == 0:
if fast_implicit_guess_use_guide_flag:
data_s = y0
eps_s = x_0 - data_s
else:
eps_s, data_s = rk(x_0, x_0, sigma, h, **extra_args)
else:
eps_s, data_s = eps, denoised
for i in range(len(s_all)-1):
eps_list.append(eps_s * s_all[i]/sigma)
if torch.allclose(s_all[-1], sigma_down, atol=1e-8):
eps_list.append(eps_s * sigma_down/sigma)
if not (eps_s is eps):
del eps_s
if not (data_s is y0 or data_s is denoised):
del data_s
else:
# EXPLICIT GUESS
x_mid = x
for i in range(len(s_all)-1):
x_mid, eps_, data_ = get_explicit_rk_step(rk, rk_type, x_mid, LG, step, s_all[i], s_all[i+1], eta, eta_var, s_noise, noise_mode, c2, c3, step+i, sigmas_and, x_, eps_, data_, unsample_resample_scale, extra_options, frame_weights_grp,
x_init, x_prenoise, NOISE_COSSIM_SOURCE, NOISE_COSSIM_MODE, noise_cossim_max_iter, noise_cossim_max_score, noise_cossim_tile_size, noise_cossim_iterations,SDE_NOISE_EXTERNAL,sde_noise_t,MODEL_SAMPLING,
**extra_args)
eps_list.append(eps_[0])
data_[0].zero_()
eps_ [0].zero_()
if torch.allclose(s_all[-1], sigma_down, atol=1e-8):
eps_down, data_down = rk(x_0, x_mid, sigma_down, h, **extra_args) #should h_irk = h? going to change it for now.
eps_list.append(eps_down)
s_all = [s for s in s_all if s in s_irk_rk]
eps_list = [eps_list[s_all.index(s)].clone() for s in s_irk_rk]
eps2_ = torch.stack(eps_list, dim=0)
# FULLY IMPLICIT LOOP
for implicit_iter in range(implicit_steps):
for row in range(irk.rows):
x_[row+1] = x_0 + h_irk * irk.a_k_sum(eps2_, row)
eps2_[row], data_[row] = irk(x_0, x_[row+1], s_irk[row], h_irk, **extra_args)
if not extra_options_flag("implicit_loop_skip_guide", extra_options):
eps2_, x_ = LG.process_guides_substep(x_0, x_, eps2_, data_, row, step, sigma, sigma_next, sigma_down, s_irk, unsample_resample_scale, irk, irk_type, extra_options, frame_weights_grp)
x = x_0 + h_irk * irk.b_k_sum(eps2_, 0)
denoised = x_0 + (sigma / (sigma - sigma_down)) * h_irk * irk.b_k_sum(eps2_, 0)
eps = x - denoised
x = LG.process_guides_poststep(x, denoised, eps, step, extra_options)
del eps2_
preview_callback(x, eps, denoised, x_, eps_, data_, step, sigma, sigma_next, callback, extra_options)
sde_noise_t = None
if SDE_NOISE_EXTERNAL:
if step >= len(sde_noise):
SDE_NOISE_EXTERNAL=False
else:
sde_noise_t = sde_noise[step]
if is_RF_model(model) == True or (is_RF_model(model) == False and noise_mode != "hard"):
if sigma_up > 0:
#print("NOISE_FULL: sigma_up, sigma, sigma_next, sigma_down, alpha_ratio: ", sigma_up.item(), sigma.item(), sigma_next.item(), sigma_down.item(), alpha_ratio.item())
if implicit_steps==0:
rk_or_irk = rk
rk_or_irk_type = rk_type
else:
rk_or_irk = irk
rk_or_irk_type = irk_type
Osde = NoiseStepHandlerOSDE(x, eps, denoised, x_init, y0, y0_inv)
if Osde.check_cossim_source(NOISE_COSSIM_SOURCE):
noise = rk_or_irk.noise_sampler(sigma=sigma, sigma_next=sigma_next)
noise_osde = Osde.get_ortho_noise(noise, prev_noises, max_iter=noise_cossim_max_iter, max_score=noise_cossim_max_score, NOISE_COSSIM_SOURCE=NOISE_COSSIM_SOURCE, extra_options=extra_options)
x = alpha_ratio * x + sigma_up * noise_osde * s_noise
del noise, noise_osde
elif noise_cossim_flag:
x = handle_tiled_etc_noise_steps(x_0, x, x_prenoise, x_init, eps, denoised, y0, y0_inv, step,
rk_or_irk_type, rk_or_irk, sigma_up, sigma, sigma_next, alpha_ratio, s_noise, noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t,
NOISE_COSSIM_SOURCE, NOISE_COSSIM_MODE, noise_cossim_tile_size, noise_cossim_iterations,
extra_options)
else:
x = rk_or_irk.add_noise_post(x, sigma_up, sigma, sigma_next, alpha_ratio, s_noise, noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t)
#log("Data vs. y0 cossim score: ", get_cosine_similarity(data_[0], y0).item())
for ms in range(rk.multistep_stages):
if RK_Method.is_exponential(rk_type):
eps_[rk.multistep_stages - ms] = data_[rk.multistep_stages - ms - 1] - x
else:
eps_[rk.multistep_stages - ms] = (x - data_[rk.multistep_stages - ms - 1]) / sigma
#eps_ [rk.multistep_stages - ms] = eps_ [rk.multistep_stages - ms - 1]
data_[rk.multistep_stages - ms] = data_[rk.multistep_stages - ms - 1]
eps_ [0] = torch.zeros_like(eps_ [0])
data_[0] = torch.zeros_like(data_[0])
denoised_prev = denoised
eps_prev = eps
preview_callback(x, eps, denoised, x_, eps_, data_, step, sigma, sigma_next, callback, extra_options, FINAL_STEP=True)
# Clean up tensors
if 'x_' in locals():
del x_
if 'data_' in locals():
del data_
if 'eps_' in locals():
del eps_
if 'rk' in locals():
del rk
if 'irk' in locals():
del irk
if 'LG' in locals():
del LG
return x
def get_explicit_rk_step(rk, rk_type, x, LG, step, sigma, sigma_next, eta, eta_var, s_noise, noise_mode, c2, c3, stepcount, sigmas, x_, eps_, data_, unsample_resample_scale, extra_options, frame_weights_grp,
x_init, x_prenoise, NOISE_COSSIM_SOURCE, NOISE_COSSIM_MODE, noise_cossim_max_iter, noise_cossim_max_score, noise_cossim_tile_size, noise_cossim_iterations,SDE_NOISE_EXTERNAL,sde_noise_t,MODEL_SAMPLING,
**extra_args) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
eta = float(get_extra_options_kv("implicit_substep_eta", eta, extra_options))
sigma_up, sigma, sigma_down, alpha_ratio = get_res4lyf_step_with_model(rk.model, sigma, sigma_next, eta, noise_mode)
h = rk.h_fn(sigma_down, sigma)
c2, c3 = get_res4lyf_half_step3(sigma, sigma_down, c2, c3, t_fn=rk.t_fn, sigma_fn=rk.sigma_fn)
rk.set_coeff(rk_type, h, c2=c2, c3=c3, stepcount=stepcount, sigmas=sigmas, sigma_down=sigma_down, extra_options=extra_options)
s_ = [(sigma + h * c_) * s_in for c_ in rk.c]
x_[0] = rk.add_noise_pre(x, sigma_up, sigma, sigma_next, alpha_ratio, s_noise, noise_mode)
x_0 = x_[0]
for ms in range(rk.multistep_stages):
if RK_Method.is_exponential(rk_type):
eps_ [rk.multistep_stages - ms] = data_ [rk.multistep_stages - ms] - x_0
else:
eps_ [rk.multistep_stages - ms] = (x_0 - data_ [rk.multistep_stages - ms]) / sigma
for row in range(rk.rows - rk.multistep_stages):
x_[row+1] = x_0 + h * rk.a_k_sum(eps_, row)
eps_[row], data_[row] = rk(x_0, x_[row+1], s_[row], h, **extra_args)
eps_, x_ = LG.process_guides_substep(x_0, x_, eps_, data_, row, step, sigma, sigma_next, sigma_down, s_, unsample_resample_scale, rk, rk_type, extra_options, frame_weights_grp)
x = x_0 + h * rk.b_k_sum(eps_, 0)
denoised = x_0 + (sigma / (sigma - sigma_down)) * h * rk.b_k_sum(eps_, 0)
eps = x - denoised
y0 = LG.y0
if LG.y0.shape[0] > 1:
y0 = LG.y0[min(step, LG.y0.shape[0]-1)].unsqueeze(0)
x = LG.process_guides_poststep(x, denoised, eps, step, extra_options)
#x = rk.add_noise_post(x, sigma_up, sigma, sigma_next, alpha_ratio, s_noise, noise_mode)
if is_RF_model(rk.model) == True or (is_RF_model(rk.model) == False and noise_mode != "hard"):
if sigma_up > 0:
Osde = NoiseStepHandlerOSDE(x, eps, denoised, x_init, y0, LG.y0_inv)
if Osde.check_cossim_source(NOISE_COSSIM_SOURCE):
noise = rk.noise_sampler(sigma=sigma, sigma_next=sigma_next)
noise_osde = Osde.get_ortho_noise(noise, [], max_iter=noise_cossim_max_iter, max_score=noise_cossim_max_score, NOISE_COSSIM_SOURCE=NOISE_COSSIM_SOURCE, extra_options=extra_options)
x = alpha_ratio * x + sigma_up * noise_osde * s_noise
del noise, noise_osde, Osde
elif extra_options_flag("noise_cossim", extra_options):
x = handle_tiled_etc_noise_steps(x_0, x, x_prenoise, x_init, eps, denoised, y0, LG.y0_inv, step,
rk_type, rk, sigma_up, sigma, sigma_next, alpha_ratio, s_noise, noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t,
NOISE_COSSIM_SOURCE, NOISE_COSSIM_MODE, noise_cossim_tile_size, noise_cossim_iterations,
extra_options)
else:
x = rk.add_noise_post(x, sigma_up, sigma, sigma_next, alpha_ratio, s_noise, noise_mode, SDE_NOISE_EXTERNAL, sde_noise_t)
for ms in range(rk.multistep_stages): # NEEDS ADJUSTING?
eps_ [rk.multistep_stages - ms] = eps_ [rk.multistep_stages - ms - 1]
data_[rk.multistep_stages - ms] = data_[rk.multistep_stages - ms - 1]
return x, eps_, data_
def preview_callback(x, eps, denoised, x_, eps_, data_, step, sigma, sigma_next, callback, extra_options, FINAL_STEP=False):
if FINAL_STEP:
denoised_callback = denoised
elif extra_options_flag("eps_substep_preview", extra_options):
row_callback = int(get_extra_options_kv("eps_substep_preview", "0", extra_options))
denoised_callback = eps_[row_callback]
elif extra_options_flag("denoised_substep_preview", extra_options):
row_callback = int(get_extra_options_kv("denoised_substep_preview", "0", extra_options))
denoised_callback = data_[row_callback]
elif extra_options_flag("x_substep_preview", extra_options):
row_callback = int(get_extra_options_kv("x_substep_preview", "0", extra_options))
denoised_callback = x_[row_callback]
elif extra_options_flag("eps_preview", extra_options):
denoised_callback = eps
elif extra_options_flag("denoised_preview", extra_options):
denoised_callback = denoised
elif extra_options_flag("x_preview", extra_options):
denoised_callback = x
else:
denoised_callback = data_[0]
callback({'x': x, 'i': step, 'sigma': sigma, 'sigma_next': sigma_next, 'denoised': denoised_callback.to(torch.float32)}) if callback is not None else None
gc.collect()
return
def sample_res_2m(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_2m", eta=0.0, )
def sample_res_2s(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_2s", eta=0.0, )
def sample_res_3s(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_3s", eta=0.0, )
def sample_res_5s(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_5s", eta=0.0, )
def sample_res_6s(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_6s", eta=0.0, )
def sample_res_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_2m", eta=0.5, eta_substep=0.5, )
def sample_res_2s_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_2s", eta=0.5, eta_substep=0.5, )
def sample_res_3s_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_3s", eta=0.5, eta_substep=0.5, )
def sample_res_5s_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_5s", eta=0.5, eta_substep=0.5, )
def sample_res_6s_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="res_6s", eta=0.5, eta_substep=0.5, )
def sample_deis_2m(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="deis_2m", eta=0.0, )
def sample_deis_3m(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="deis_3m", eta=0.0, )
def sample_deis_4m(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="deis_4m", eta=0.0, )
def sample_deis_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="deis_2m", eta=0.5, eta_substep=0.5, )
def sample_deis_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="deis_3m", eta=0.5, eta_substep=0.5, )
def sample_deis_4m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None) -> torch.Tensor:
return sample_rk(model, x, sigmas, extra_args, callback, disable, noise_sampler_type="gaussian", noise_mode="hard", noise_seed=-1, rk_type="deis_4m", eta=0.5, eta_substep=0.5, )