You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The configuration of the default data quality check patterns in DQOps is found in the *Default checks configuration* node of the *Configuration* section.
242
303
@@ -524,6 +585,64 @@ spec:
524
585
```
525
586
526
587
588
+
### Default daily partitioned checks
589
+
The default configuration of column-level [partition checks](definition-of-data-quality-checks/partition-checks.md)
590
+
focuses on detecting anomalies related to null values, numeric values and distinct values across daily partitions.
591
+
592
+
The default column-level daily partition checks are described in the table below.
593
+
594
+
| Category | Data quality check | Description | Data quality rule |
|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)| <spanclass="no-wrap-code ">[`daily_partition_nulls_count`](../checks/column/nulls/nulls-count.md#daily-partition-nulls-count)</span> | Counts null values in a monitored column. Detects partially incomplete columns that contain any null values. |_no rules (use the dashboards to review the results)_|
597
+
|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)| <spanclass="no-wrap-code ">[`daily_partition_nulls_percent`](../checks/column/nulls/nulls-percent.md#daily-nulls-percent)</span> | Measures the percentage of null values in a column. |_no rules (use the dashboards to review the results)_|
598
+
|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)| <spanclass="no-wrap-code ">[`daily_partition_nulls_percent_anomaly`](../checks/column/nulls/nulls-percent-anomaly.md#daily-nulls-percent-anomaly)</span> | Detects anomalies in the percentage of null values. Identifies the most significant increases or decreases in the rate of null values since the previous day or the last known value. | Raises a *warning* severity issue when the increase or decrease in the percentage of nulls is in the top 1% of the biggest day-to-day changes. |
599
+
|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)| <spanclass="no-wrap-code ">[`daily_partition_not_nulls_percent`](../checks/column/nulls/not-nulls-percent.md#daily-not-nulls-percent)</span> | Detects empty columns by counting not null values. |_no rules (use the dashboards to review the results)_|
600
+
|[uniqueness](../categories-of-data-quality-checks/how-to-detect-data-uniqueness-issues-and-duplicates.md)| <spanclass="no-wrap-code ">[`daily_partition_distinct_count_anomaly`](../checks/column/uniqueness/distinct-count-anomaly.md#daily-partition-distinct-count-anomaly)</span> | Detects anomalies in the count of distinct (unique) values. Identifies the most significant increases or decreases in the count of distinct values since the previous day or the last known value. | Raises a *warning* severity issue when the increase or decrease in the count of distinct values is in the top 1% of the most significant day-to-day changes. |
601
+
|[anomaly](../categories-of-data-quality-checks/how-to-detect-anomaly-data-quality-issues.md)| <spanclass="no-wrap-code ">[`daily_partition_sum_anomaly`](../checks/column/anomaly/sum-anomaly.md#daily-partition-sum-anomaly)</span> | Detects anomalies in the sum of numeric values. Identifies the most significant increases or decreases in the sum of values since the previous day or the last known value. **_DQOps activates this check only on numeric columns._**| Raises a *warning* severity issue when the increase or decrease in the sum of numeric values is in the top 1% of the most significant day-to-day changes. |
602
+
|[anomaly](../categories-of-data-quality-checks/how-to-detect-anomaly-data-quality-issues.md)| <spanclass="no-wrap-code ">[`daily_partition_mean_anomaly`](../checks/column/anomaly/mean-anomaly.md#daily-partition-mean-anomaly)</span> | Detects anomalies in the mean (average) of numeric values. Identifies the most significant increases or decreases in the mean of values since the previous day or the last known value. **_DQOps activates this check only on numeric columns._**| Raises a *warning* severity issue when the increase or decrease in the mean of numeric values is in the top 1% of the most significant day-to-day changes. |
603
+
|[anomaly](../categories-of-data-quality-checks/how-to-detect-anomaly-data-quality-issues.md)| <spanclass="no-wrap-code ">[`daily_partition_min_anomaly`](../checks/column/anomaly/min-anomaly.md#daily-partition-min-anomaly)</span> | Detects anomalies as a new minimal numeric value (outlier detection). Identifies the most significant increases or decreases in the minimal value since the previous day or the last known value. **_DQOps activates this check only on numeric columns._**| Raises a *warning* severity issue when the increase or decrease in the minimum of numeric values is in the top 1% of the most significant day-to-day changes. |
604
+
|[anomaly](../categories-of-data-quality-checks/how-to-detect-anomaly-data-quality-issues.md)| <spanclass="no-wrap-code ">[`daily_partition_max_anomaly`](../checks/column/anomaly/max-anomaly.md#daily-partition-max-anomaly)</span> | Detects anomalies as a new maximal numeric value (outlier detection). Identifies the most significant increases or decreases in the maximal value since the previous day or the last known value. **_DQOps activates this check only on numeric columns._**| Raises a *warning* severity issue when the increase or decrease in the maximum of numeric values is in the top 1% of the most significant day-to-day changes. |
605
+
|[datatype](../categories-of-data-quality-checks/how-to-detect-data-type-changes.md)| <spanclass="no-wrap-code ">[`daily_partition_detected_datatype_in_text_changed`](../checks/column/datatype/detected-datatype-in-text-changed.md#daily-partition-detected-datatype-in-text-changed)</span> | Analyzes values in text columns to detect if all values are convertible to the same data type (boolean, numeric, date, etc). **_DQOps activates this check only on text columns._**| Raises a *warning* severity issue when the values found in a text column are in a different format or a new value that is not convertible to the previously detected data type is found. For example, the column *customer_id* in the landing zone table always contained integer values, and a non-numeric value appeared. |
606
+
607
+
The following extract of the *patterns/default.dqocolumnpattern.yaml* file shows the configuration
608
+
of the default column-level [partition checks](definition-of-data-quality-checks/partition-checks.md).
- Learn how to [monitor, review and react to data quality issues](../working-with-dqo/daily-monitoring-of-data-quality.md) detected by the default data quality checks.
0 commit comments