-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_platforms.py
163 lines (131 loc) · 4.94 KB
/
train_platforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import wandb
from utils.dist_util import is_rank_zero
class TrainPlatform:
def __init__(self, save_dir):
pass
def report_scalar(self, name, value, iteration, group_name=None):
pass
def report_args(self, args, name):
pass
def close(self):
pass
class ClearmlPlatform(TrainPlatform):
def __init__(self, save_dir):
from clearml import Task
path, name = os.path.split(save_dir)
self.task = Task.init(
project_name="motion_diffusion", task_name=name, output_uri=path
)
self.logger = self.task.get_logger()
def report_scalar(self, name, value, iteration, group_name):
self.logger.report_scalar(
title=group_name, series=name, iteration=iteration, value=value
)
def report_args(self, args, name):
self.task.connect(args, name=name)
def close(self):
self.task.close()
class TensorboardPlatform(TrainPlatform):
def __init__(self, save_dir):
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=save_dir)
def report_scalar(self, name, value, iteration, group_name=None):
self.writer.add_scalar(f"{group_name}/{name}", value, iteration)
def close(self):
self.writer.close()
class WandbPlatform(TrainPlatform):
def __init__(self, save_dir):
wandb_name = save_dir
wandb.init(project="motionfm", config=None, name=wandb_name)
def report_scalar(self, name, value, iteration, group_name=None):
wandb.log(f"{group_name}/{name}", value, iteration)
def close(self):
pass
class Wandb_ClearML_Platform(TrainPlatform):
def __init__(self, save_dir, wandb_cfg, cfg, open_cleanml=False):
self.open_cleanml = open_cleanml
if is_rank_zero():
project_name = wandb_cfg.project
wandb.finish()
wandb.init(
**wandb_cfg,
settings=wandb.Settings(
start_method="fork", _disable_stats=True, _disable_meta=True
),
config=dict(cfg),
)
######
if open_cleanml:
from clearml import Task
path, name = os.path.split(save_dir)
self.task = Task.init(
project_name=project_name, task_name=name, output_uri=path
)
self.logger = self.task.get_logger()
def report_scalar(self, name, value, iteration, group_name=None):
if is_rank_zero():
wandb_dict = dict()
wandb_dict[f"{group_name}/{name}"] = value
wandb.log(wandb_dict, step=iteration)
######
if self.open_cleanml:
self.logger.report_scalar(
title=group_name, series=name, iteration=iteration, value=value
)
def report_video(self, name, local_path, iteration, group_name=None):
if is_rank_zero():
wandb_dict = dict()
wandb_dict[f"{group_name}/{name}"] = wandb.Video(
local_path, fps=4, format="gif"
)
wandb.log(wandb_dict, step=iteration)
######
if self.open_cleanml:
self.logger.report_media(
title=group_name,
series=name,
iteration=iteration,
local_path=local_path,
)
def report_video_list(self, name, mp4_root_path, iteration, group_name=None):
if is_rank_zero():
local_path_list = [
os.path.join(mp4_root_path, f)
for f in os.listdir(mp4_root_path)
if f.endswith(".mp4") or f.endswith(".gif")
]
wandb_dict = dict()
wandb_dict[f"{group_name}/{name}"] = [
wandb.Video(local_path, fps=4, format="gif")
for local_path in local_path_list
]
wandb.log(wandb_dict, step=iteration)
######
if self.open_cleanml:
for local_path in local_path_list:
self.logger.report_media(
title=group_name,
series=name,
iteration=iteration,
local_path=local_path,
)
def report_args(self, args, name):
if self.open_cleanml:
if is_rank_zero():
self.task.connect(args, name=name)
if False:
config = (
omegaconf.OmegaConf.to_container(
cfg,
resolve=True,
throw_on_missing=False,
),
)
def close(self):
if self.open_cleanml:
if is_rank_zero():
self.task.close()
class NoPlatform(TrainPlatform):
def __init__(self, save_dir):
pass