-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_humanact12_uestc.py
113 lines (94 loc) · 3.39 KB
/
eval_humanact12_uestc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import os
import hydra
import torch
import re
from utils import dist_util
from model.cfg_sampler import ClassifierFreeSampleModel
from data_loaders.get_data import get_dataset_loader
from eval.a2m.tools import save_metrics
from utils.parser_util import evaluation_parser
from utils.fixseed import fixseed
from utils.model_util import (
create_model_and_diffusion,
create_model_and_flow,
load_model_wo_clip,
)
def evaluate(cfg1, model, diffusion, data, cfg):
scale = None
if cfg.guidance_param != 1:
model = ClassifierFreeSampleModel(
model
) # wrapping model with the classifier-free sampler
scale = {
"action": torch.ones(cfg.batch_size) * cfg.guidance_param,
}
model.to(dist_util.dev())
model.eval() # disable random masking
folder, ckpt_name = os.path.split(cfg.model_path)
if cfg.dataset == "humanact12":
from eval.a2m.gru_eval import evaluate
eval_results = evaluate(cfg, model, diffusion, data, cfg)
elif cfg.dataset == "uestc":
from eval.a2m.stgcn_eval import evaluate
eval_results = evaluate(cfg, model, diffusion, data, cfg)
else:
raise NotImplementedError("This dataset is not supported.")
# save results
iter = int(re.findall("\d+", ckpt_name)[0])
scale = 1 if scale is None else scale["action"][0].item()
scale = str(scale).replace(".", "p")
metricname = "evaluation_results_iter{}_samp{}_scale{}_a2m.yaml".format(
iter, cfg.num_samples, scale
)
evalpath = os.path.join(folder, metricname)
print(f"Saving evaluation: {evalpath}")
save_metrics(evalpath, eval_results)
return eval_results
@hydra.main(config_path="config", config_name="config_base", version_base=None)
def main(cfg):
if cfg.is_debug:
print("debug mode")
cfg.guidance_param = 1.0
cfg.eval_mode = "debug"
cfg.model_path = "./outputs/occupy_a2m_humanct12_4gpu_300k_lambda0/19-09-2023/15-04-36/model000300000.pt"
fixseed(cfg.seed)
dist_util.setup_dist()
print(f"Eval mode [{cfg.eval_mode}]")
assert cfg.eval_mode in [
"debug",
"full",
], f"eval_mode {cfg.eval_mode} is not supported for dataset {cfg.dataset}"
if cfg.eval_mode == "debug":
cfg.num_samples = 10
cfg.num_seeds = 2
print("Debug mode, only 10 samples will be generated.")
else:
cfg.num_samples = 1000
cfg.num_seeds = 20
data_loader = get_dataset_loader(
name=cfg.dataset,
num_frames=60,
batch_size=cfg.batch_size,
)
if cfg.dynamic == "diffusion":
model, dynamic = create_model_and_diffusion(cfg, data_loader)
elif cfg.dynamic == "flow":
model, dynamic = create_model_and_flow(cfg, data_loader)
else:
raise ValueError()
print(f"Loading checkpoints from [{cfg.model_path}]...")
state_dict = torch.load(cfg.model_path, map_location="cpu")
load_model_wo_clip(model, state_dict)
eval_results = evaluate(cfg, model, dynamic, data_loader.dataset, cfg)
fid_to_print = {
k: sum([float(vv) for vv in v]) / len(v)
for k, v in eval_results["feats"].items()
if "fid" in k and "gen" in k
}
print(fid_to_print)
if __name__ == "__main__":
main()