-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathm_crystallography.f90
548 lines (459 loc) · 16.3 KB
/
m_crystallography.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
!--------------------------------------------------------------------------------
!
! Copyright (C) 2017 L. J. Allen, H. G. Brown, A. J. D’Alfonso, S.D. Findlay, B. D. Forbes
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------
module m_crystallography
interface make_g_vec_array
module procedure make_g_vec_array_real,make_g_vec_array_int
end interface
contains
subroutine make_g_vec_array_real(g_vec_array,ifactory,ifactorx)
use m_precision, only: fp_kind
use global_variables, only: nopiy, nopix, ig1, ig2
implicit none
real(fp_kind) :: g_vec_array(3,nopiy,nopix)
integer,intent(in),optional:: ifactory,ifactorx
integer :: shiftx, shifty, m1, m2, i, j
real(fp_kind)::ifactory_,ifactorx_
ifactory_= 1.0_fp_kind; if(present(ifactory)) ifactory_=ifactory
ifactorx_= 1.0_fp_kind; if(present(ifactorx)) ifactorx_=ifactorx
shifty = (nopiy-1)/2-1
shiftx = (nopix-1)/2-1
!$OMP PARALLEL PRIVATE(i, m2, j, m1)
!$OMP DO
do i = 1, nopiy
m2 = mod( i+shifty, nopiy) - shifty -1
do j = 1, nopix
m1 = mod( j+shiftx, nopix) - shiftx -1
g_vec_array(:,i,j) = m1 * ig1/ifactorx_ + m2 * ig2/ifactory_
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
end subroutine make_g_vec_array_real
subroutine make_g_vec_array_int(g_vec_array)
use m_precision, only: fp_kind
use global_variables, only: nopiy, nopix, ig1, ig2
implicit none
integer :: g_vec_array(3,nopiy,nopix)
integer :: shiftx, shifty, m1, m2, i, j
shifty = (nopiy-1)/2-1
shiftx = (nopix-1)/2-1
!$OMP PARALLEL PRIVATE(i, m2, j, m1)
!$OMP DO
do i = 1, nopiy
m2 = mod( i+shifty, nopiy) - shifty -1
do j = 1, nopix
m1 = mod( j+shiftx, nopix) - shiftx -1
g_vec_array(:,i,j) = m1 * ig1 + m2 * ig2
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
end subroutine make_g_vec_array_int
SUBROUTINE CRYST(A0,DEG,SS)
use m_precision
!
! This subroutine calculates the triclinic information and stores it
! in SS(7).
!
! A0 contains a, b and c in Angs, DEG
! contains alpha, beta and gamma in degrees, and SS is an array to
! carry the triclinic information.
!
implicit none
!implicit double precision (a-h,o-z)
integer(4) i
real(fp_kind) ang,derad,D,COMP
real(fp_kind) A0(3), DEG(3), SS(7), C(3), S(3)
DATA COMP / 1.0e-04_fp_kind /
derad=atan(1.0_fp_kind)*4.0_fp_kind/180.0_fp_kind
if(a0(1).le.0.0_fp_kind) go to 99
do i = 1, 3
ang = deg(i) * derad
c(i) = cos( ang )
s(i) = sin( ang )
if(abs(c(i)).lt.comp) then
c(i) = 0.0_fp_kind
s(i) = 1.0_fp_kind
endif
enddo
SS(1) = (A0(2) * A0(3) * S(1)) ** 2.0_fp_kind
SS(2) = (A0(1) * A0(3) * S(2)) ** 2.0_fp_kind
SS(3) = (A0(1) * A0(2) * S(3)) ** 2.0_fp_kind
D = A0(1) * A0(2) * A0(3)
SS(4) = D * A0(3) * (C(1) * C(2) - C(3))
SS(5) = D * A0(1) * (C(2) * C(3) - C(1))
SS(6) = D * A0(2) * (C(3) * C(1) - C(2))
SS(7) = D * sqrt( 1._fp_kind - C(1) ** 2.0_fp_kind - C(2) ** 2.0_fp_kind &
& - C(3) ** 2.0_fp_kind + 2.0_fp_kind * C(1) * C(2) * C(3) )
99 continue
return
end SUBROUTINE
!--------------------------------------------------------------------------------------
subroutine zone(ig1,ig2,izone)
!
! Derived from zone axis law CJR 29/3/90
! Thanks to Peter Miller. Find [uvw] zone
! from input ig1(3). ig2(3) is rotated clockwise from ig1.
!
use m_precision
implicit none
integer(4) i,ic,izz
integer(4) izone(3),ig1(3),ig2(3),max
real(fp_kind) zzz,diff
izone(1) = ig1(2) * ig2(3) - ig1(3) * ig2(2)
izone(2) = ig1(3) * ig2(1) - ig1(1) * ig2(3)
izone(3) = ig1(1) * ig2(2) - ig1(2) * ig2(1)
max = 0
do i = 1, 3
izz = abs(izone(i))
max = max0(max,izz)
enddo
ic = 1
21 continue
do i = 1, 3
zzz = float(ic * izone(i))
diff = zzz / max - ic * izone(i) / max
if(abs(diff).gt.0.01_fp_kind) then
ic = ic + 1
go to 21
endif
enddo
do i = 1,3
izone(i) = izone(i) * float(ic)/float(max)
enddo
return
end subroutine
!--------------------------------------------------------------------------------------
subroutine subuvw(hkl,ruvw,a0,deg,ss)
!
! This subroutine finds the real space vector [uvw] which is
! parallel to an input reciprocal lattice vector (hkl), and
! its magnitude is 1 / | hkl |.
!
use m_precision
implicit none
integer(4) i,j
real(fp_kind) ss(7),ruvw(3),fuvw(3),a0(3),deg(3),auvw
real(fp_kind) amaxim,amaxr,factor,ahkl
integer(4) hkl(3)
fuvw(1) = hkl(1)*ss(1)+hkl(2)*ss(4)+hkl(3)*ss(6)
fuvw(2) = hkl(1)*ss(4)+hkl(2)*ss(2)+hkl(3)*ss(5)
fuvw(3) = hkl(1)*ss(6)+hkl(2)*ss(5)+hkl(3)*ss(3)
amaxim=0.0_fp_kind
do i=1,3
if(abs(fuvw(i)).gt.amaxim) then
j = i
amaxim = abs(fuvw(i))
ruvw(j) = 1.0_fp_kind
endif
enddo
do i = 1,3
ruvw(i) = ruvw(j)*fuvw(i)/fuvw(j)
enddo
ahkl = trimi(hkl,ss)
auvw = rsd(ruvw,a0,deg)
factor = auvw * ahkl
amaxr = 0.0d0
do i = 1,3
ruvw(i) = ruvw(i)/factor
if(abs(ruvw(i)).gt.amaxr) amaxr = abs(ruvw(i))
enddo
do i = 1,3
if(abs(ruvw(i)/amaxr).lt.0.00001_fp_kind) ruvw(i) = 0.0_fp_kind
enddo
! ----------------------------------------------------------------
! Bug fix inserted 4/6/99. LJA. Otherwise for 0 -2 2, for example,
! the real space vector was in the wrong direction. If the first
! nonzero component is positive then there was no problem.
! ----------------------------------------------------------------
if (fuvw(j).lt.0.0_fp_kind) then
do i=1,3
ruvw(i) = -ruvw(i)
enddo
endif
return
end subroutine
!--------------------------------------------------------------------------------------
subroutine subhkl(izone,gg,a0,deg,ss)
!
! This subroutine finds the reciprocal space vector (gg) which is
! parallel to an input real space (integer) lattice vector [izone], and
! its magnitude is 1 / | izone |.
!
use m_precision
implicit none
real(fp_kind) gg(3),fuvw(3),a0(3),deg(3),ruvw(3),ss(7),c(3),auvw
real(fp_kind) amaxim,radeg,ahkl,amaxg,factor,sign
integer(4) izone(3)
integer(4) i,j,ihit
radeg=180.0_fp_kind/(atan(1.0_fp_kind)*4.0_fp_kind)
do i = 1,3
c(i) = cos( deg(i) / radeg)
if(c(i).gt.0.9999_fp_kind) c(i) = 1.0_fp_kind
enddo
fuvw(1) = izone(1) * a0(1) ** 2.0_fp_kind + &
& izone(2) * a0(1) * a0(2) * c(3) + &
& izone(3) * a0(3) * a0(1) * c(2)
fuvw(2) = izone(2) * a0(2) ** 2.0_fp_kind + &
& izone(3) * a0(2) * a0(3) * c(1) + &
& izone(1) * a0(1) * a0(2) * c(3)
fuvw(3) = izone(3) * a0(3) ** 2.0_fp_kind + &
& izone(1) * a0(3) * a0(1) * c(2) + &
& izone(2) * a0(2) * a0(3) * c(1)
amaxim=0.0_fp_kind
ihit = 0
do i = 1, 3
ruvw(i) = dble(izone(i))
if(abs(fuvw(i)).gt.amaxim) then
j = i
ihit = 1
amaxim = abs(fuvw(i))
gg(j) = 1.0_fp_kind
endif
enddo
if(ihit.eq.1) then
do i = 1,3
gg(i) = gg(j) * fuvw(i) / fuvw(j)
enddo
ahkl = trimr(gg,ss)
auvw = rsd(ruvw,a0,deg)
factor = auvw * ahkl
sign = 1.0_fp_kind
if(gg(j)/fuvw(j).lt.0.0_fp_kind) sign = -1.0_fp_kind
amaxg = 0.0_fp_kind
do i = 1,3
gg(i) = sign * gg(i) / factor
if(abs(gg(i)).gt.amaxg) amaxg = abs(gg(i))
enddo
do i = 1,3
if(abs(gg(i)/amaxg).lt.0.00001_fp_kind) gg(i) = 0.0_fp_kind
enddo
endif
if(ihit.eq.0) then
do i = 1,3
gg(i) = 0.0_fp_kind
enddo
endif
return
end subroutine
!--------------------------------------------------------------------------------------
subroutine rshkl(zone,gg,a0,deg,ss)
!
! This subroutine finds the reciprocal space vector (gg) which is
! parallel to an input real space (real) lattice vector [zone], and
! its magnitude is 1 / | zone |.
!
use m_precision
implicit none
real(fp_kind) gg(3),fuvw(3),a0(3),deg(3),ruvw(3),ss(7),c(3)
real(fp_kind) zone(3),auvw,ahkl,amaxg,amaxim,factor,radeg,sign
integer(4) i,j
radeg=180.0_fp_kind/(atan(1.0_fp_kind)*4.0_fp_kind)
do i = 1,3
c(i) = cos( deg(i) / radeg)
if(c(i).gt.0.99990_fp_kind) c(i) = 1.00_fp_kind
enddo
fuvw(1) = zone(1) * a0(1) ** 2.00_fp_kind + &
& zone(2) * a0(1) * a0(2) * c(3) +&
& zone(3) * a0(3) * a0(1) * c(2)
fuvw(2) = zone(2) * a0(2) ** 2.00_fp_kind + &
& zone(3) * a0(2) * a0(3) * c(1) +&
& zone(1) * a0(1) * a0(2) * c(3)
fuvw(3) = zone(3) * a0(3) ** 2.00_fp_kind + &
& zone(1) * a0(3) * a0(1) * c(2) +&
& zone(2) * a0(2) * a0(3) * c(1)
amaxim=0.00_fp_kind
do i=1,3
ruvw(i) = zone(i)
if(abs(fuvw(i)).gt.amaxim) then
j = i
amaxim = abs(fuvw(i))
gg(j) = 1.00_fp_kind
endif
enddo
do i = 1,3
gg(i) = gg(j) * fuvw(i) / fuvw(j)
enddo
ahkl = trimr(gg,ss)
auvw = rsd(ruvw,a0,deg)
factor = auvw * ahkl
sign = 1.00_fp_kind
if(gg(j)/fuvw(j).lt.0.00_fp_kind) sign = -1.00_fp_kind
amaxg = 0.00_fp_kind
do i = 1,3
gg(i) = sign * gg(i) / factor
if(abs(gg(i)).gt.amaxg) amaxg = abs(gg(i))
enddo
do i = 1,3
if(abs(gg(i)/amaxg).lt.0.000010_fp_kind) gg(i) = 0.00_fp_kind
enddo
return
end subroutine
!--------------------------------------------------------------------------------------
subroutine angle(ig1,ig2,ss,thetad)
!
! This subroutine finds the angle (thetad) in degrees between two input
! reciprocal lattice vectors g1 and g2. The angle lies between
! 0 and 180 degrees, and G2 is rotated by this angle clockwise
! from the G1 direction.
use m_precision
implicit none
real(fp_kind) h12(3), h1(3), h2(3), ss(7)
real(fp_kind) thetad,ag1,ag2,deg1,deg2
real(fp_kind) pi
integer(4) ig1(3), ig2(3)
integer(4) i,j
pi=atan(1.00_fp_kind)*4.00_fp_kind
ag1 = trimi(ig1,ss)
ag2 = trimi(ig2,ss)
if(ag1.eq.0.0_fp_kind.or.ag2.eq.0.0_fp_kind) then
write(6,101)
101 format(' Error in Angle - one vector has zero magnitude')
go to 99
endif
do i = 1,3
h1(i) = float(ig1(i))/ag1
h2(i) = float(ig2(i))/ag2
h12(i) = h1(i) + h2(i)
enddo
if(h12(1).eq.0.0_fp_kind.and.h12(2).eq.0.0_fp_kind.and.h12(3).eq.0.0_fp_kind) then
thetad = 180.0_fp_kind
go to 99
endif
deg1 = acos(cosanr(h1,h12,ss)) * 180.0_fp_kind / pi
deg2 = acos(cosanr(h12,h2,ss)) * 180.0_fp_kind / pi
thetad = deg1 + deg2
if(abs(thetad-90.0_fp_kind).lt.0.0001_fp_kind) thetad = 90.0_fp_kind
99 return
end subroutine
!--------------------------------------------------------------------------------------
pure function trimr(A,SS)
! This function returns the magnitude of a NON INTEGER
! reciprocal lattice vector
! A(3), in A-1. SS(7) contains triclinic information.
use m_precision
implicit none
real(fp_kind),intent(in):: A(3), SS(7)
real(fp_kind) trimr
trimr = sqrt( abs( sum(ss(1:3)*a(1:3)*a(1:3)) + sum(ss(4:6)*a(1:3)*cshift(a(1:3),shift=1 ))))/ SS(7)
RETURN
END function
!--------------------------------------------------------------------------------------
pure function trimi(A,SS)
! This function returns the magnitude of an INTEGER
! reciprocal lattice vector
! A(3), in A-1. SS(7) contains triclinic information.
use m_precision
implicit none
real(fp_kind),intent(in):: SS(7)
integer(4),intent(in):: A(3)
real(fp_kind) trimi
trimi = sqrt( abs( sum(ss(1:3)*a(1:3)*a(1:3)) + sum(ss(4:6)*a(1:3)*cshift(a(1:3),shift=1 ))))/ SS(7)
END function
!--------------------------------------------------------------------------------------
FUNCTION RSD(Z,A0,DEG)
! This function returns the REAL SPACE DISTANCE of vector Z(3),
! Triclinic information is contained in A0 and DEG.
use m_precision
implicit none
real(fp_kind) Z(3), A0(3), DEG(3), c(3)
real(fp_kind) derad, one, two
real(fp_kind) rsd
integer(4) i
derad=(atan(1.0_fp_kind)*4.0_fp_kind)/180.0_fp_kind
do i = 1, 3
c(i) = cos(derad * deg(i))
if(c(i).gt.0.9999_fp_kind) c(i) = 1.0_fp_kind
enddo
ONE = 0.0_fp_kind
do I = 1, 3
ONE = (A0(I) * Z(I)) ** 2.0_fp_kind + ONE
enddo
TWO = 2.0_fp_kind * A0(2) * A0(3) * Z(2) * Z(3) * c(1) + &
&2.0_fp_kind * A0(3) * A0(1) * Z(3) * Z(1) * c(2) + &
&2.0_fp_kind * A0(1) * A0(2) * Z(1) * Z(2) * c(3)
RSD = sqrt(ONE + TWO)
RETURN
END FUNCTION
!--------------------------------------------------------------------------------------
FUNCTION COSANR(A,B,SS)
! This function returns the cosine of the angle between NON INTEGER
! reciprocal lattice vectors A(3) and B(3).
! SS(7) contains triclinic data.
use m_precision
implicit none
real(fp_kind) A(3), B(3), SS(7)
real(fp_kind) F, G, Y1, Y2, Y3, YY, Z1, Z2, Z3, ZZ
real(fp_kind) prelim
real(fp_kind) cosanr
F = TRIMR( A, SS )
G = TRIMR( B, SS )
Y1 = SS(1) * A(1) * B(1)
Y2 = SS(2) * A(2) * B(2)
Y3 = SS(3) * A(3) * B(3)
YY = Y1 + Y2 + Y3
Z1 = SS(4) * (A(1) * B(2) + B(1) * A(2))
Z2 = SS(5) * (A(2) * B(3) + B(2) * A(3))
Z3 = SS(6) * (A(3) * B(1) + B(3) * A(1))
ZZ = Z1 + Z2 + Z3
prelim = (YY + ZZ) / (SS(7) ** 2.0_fp_kind * F * G)
if(abs(prelim).gt.1.0_fp_kind) then
cosanr = prelim/abs(prelim)
else
cosanr = prelim
endif
RETURN
END FUNCTION
!--------------------------------------------------------------------------------
!
! This subroutine finds the angle (thetad) in degrees between two input
! real reciprocal lattice vectors g1 and g2. The angle lies between
! 0 and 180 degrees, and G2 is rotated by this angle clockwise
! from the G1 direction.
subroutine angler(g1,g2,ss,thetad)
use m_precision
implicit none
real(fp_kind) h12(3), h1(3), h2(3), ss(7)
real(fp_kind) g1(3), g2(3)
real(fp_kind) ag1, ag2, deg1, deg2, pi, thetad
integer(4) i
pi=4.0_fp_kind*atan(1.0_fp_kind)
ag1 = trimr(g1,ss)
ag2 = trimr(g2,ss)
if(ag1.eq.0.0.or.ag2.eq.0.0) then
write(6,101)
101 format(' Error in Angle - one vector has zero magnitude')
go to 99
endif
do i = 1,3
h1(i) = g1(i)/ag1
h2(i) = g2(i)/ag2
h12(i) = h1(i) + h2(i)
enddo
if(h12(1).eq.0.and.h12(2).eq.0.and.h12(3).eq.0) then
thetad = 180.0_fp_kind
go to 99
endif
deg1 = acos(cosanr(h1,h12,ss)) * 180.0_fp_kind / pi
deg2 = acos(cosanr(h12,h2,ss)) * 180.0_fp_kind / pi
thetad = deg1 + deg2
if(abs(thetad-90).lt.0.0001_fp_kind) thetad = 90.0_fp_kind
99 return
end subroutine
end module m_crystallography