|
| 1 | +from pydomo.datasets import DataSetRequest, Schema, Column, ColumnType, Policy |
| 2 | +from pydomo.datasets import PolicyFilter, FilterOperator, PolicyType, Sorting |
| 3 | + |
| 4 | + |
| 5 | +def datasets(domo): |
| 6 | + '''DataSets are useful for data sources that only require |
| 7 | + occasional replacement. See the docs at |
| 8 | + https://developer.domo.com/docs/data-apis/data |
| 9 | + ''' |
| 10 | + domo.logger.info("\n**** Domo API - DataSet Examples ****\n") |
| 11 | + datasets = domo.datasets |
| 12 | + |
| 13 | + # Define a DataSet Schema |
| 14 | + dsr = DataSetRequest() |
| 15 | + dsr.name = 'Leonhard Euler Party' |
| 16 | + dsr.description = 'Mathematician Guest List' |
| 17 | + dsr.schema = Schema([Column(ColumnType.STRING, 'Friend')]) |
| 18 | + |
| 19 | + # Create a DataSet with the given Schema |
| 20 | + dataset = datasets.create(dsr) |
| 21 | + domo.logger.info("Created DataSet " + dataset['id']) |
| 22 | + |
| 23 | + # Get a DataSets's metadata |
| 24 | + retrieved_dataset = datasets.get(dataset['id']) |
| 25 | + domo.logger.info("Retrieved DataSet " + retrieved_dataset['id']) |
| 26 | + |
| 27 | + # List DataSets |
| 28 | + dataset_list = list(datasets.list(sort=Sorting.NAME)) |
| 29 | + domo.logger.info("Retrieved a list containing {} DataSet(s)".format( |
| 30 | + len(dataset_list))) |
| 31 | + |
| 32 | + # Update a DataSets's metadata |
| 33 | + update = DataSetRequest() |
| 34 | + update.name = 'Leonhard Euler Party - Update' |
| 35 | + update.description = 'Mathematician Guest List - Update' |
| 36 | + update.schema = Schema([Column(ColumnType.STRING, 'Friend'), |
| 37 | + Column(ColumnType.STRING, 'Attending')]) |
| 38 | + updated_dataset = datasets.update(dataset['id'], update) |
| 39 | + domo.logger.info("Updated DataSet {}: {}".format(updated_dataset['id'], |
| 40 | + updated_dataset['name'])) |
| 41 | + |
| 42 | + # Import Data from a string |
| 43 | + csv_upload = '"Pythagoras","FALSE"\n"Alan Turing","TRUE"\n' \ |
| 44 | + '"George Boole","TRUE"' |
| 45 | + datasets.data_import(dataset['id'], csv_upload) |
| 46 | + domo.logger.info("Uploaded data to DataSet " + dataset['id']) |
| 47 | + |
| 48 | + # Export Data to a string |
| 49 | + include_csv_header = True |
| 50 | + csv_download = datasets.data_export(dataset['id'], include_csv_header) |
| 51 | + domo.logger.info("Downloaded data from DataSet {}:\n{}".format( |
| 52 | + dataset['id'], csv_download)) |
| 53 | + |
| 54 | + # Export Data to a file (also returns a readable/writable file object) |
| 55 | + csv_file_path = './math.csv' |
| 56 | + include_csv_header = True |
| 57 | + csv_file = datasets.data_export_to_file(dataset['id'], csv_file_path, |
| 58 | + include_csv_header) |
| 59 | + csv_file.close() |
| 60 | + domo.logger.info("Downloaded data as a file from DataSet {}".format( |
| 61 | + dataset['id'])) |
| 62 | + |
| 63 | + # Import Data from a file |
| 64 | + csv_file_path = './math.csv' |
| 65 | + datasets.data_import_from_file(dataset['id'], csv_file_path) |
| 66 | + domo.logger.info("Uploaded data from a file to DataSet {}".format( |
| 67 | + dataset['id'])) |
| 68 | + |
| 69 | + # Personalized Data Policies (PDPs) |
| 70 | + |
| 71 | + # Build a Policy Filter (hide sensitive columns/values from users) |
| 72 | + pdp_filter = PolicyFilter() |
| 73 | + pdp_filter.column = 'Attending' # The DataSet column to filter on |
| 74 | + pdp_filter.operator = FilterOperator.EQUALS |
| 75 | + pdp_filter.values = ['TRUE'] # The DataSet row value to filter on |
| 76 | + |
| 77 | + # Build the Personalized Data Policy (PDP) |
| 78 | + pdp_request = Policy() |
| 79 | + pdp_request.name = 'Only show friends attending the party' |
| 80 | + # A single PDP can contain multiple filters |
| 81 | + pdp_request.filters = [pdp_filter] |
| 82 | + pdp_request.type = PolicyType.USER |
| 83 | + # The affected user ids (restricted access by filter) |
| 84 | + pdp_request.users = [998, 999] |
| 85 | + # The affected group ids (restricted access by filter) |
| 86 | + pdp_request.groups = [99, 100] |
| 87 | + |
| 88 | + # Create the PDP |
| 89 | + pdp = datasets.create_pdp(dataset['id'], pdp_request) |
| 90 | + domo.logger.info("Created a Personalized Data Policy (PDP): " |
| 91 | + "{}, id: {}".format(pdp['name'], pdp['id'])) |
| 92 | + |
| 93 | + # Get a Personalized Data Policy (PDP) |
| 94 | + pdp = datasets.get_pdp(dataset['id'], pdp['id']) |
| 95 | + domo.logger.info("Retrieved a Personalized Data Policy (PDP):" |
| 96 | + " {}, id: {}".format(pdp['name'], pdp['id'])) |
| 97 | + |
| 98 | + # List Personalized Data Policies (PDP) |
| 99 | + pdp_list = datasets.list_pdps(dataset['id']) |
| 100 | + domo.logger.info("Retrieved a list containing {} PDP(s) for DataSet {}" |
| 101 | + .format(len(pdp_list), dataset['id'])) |
| 102 | + |
| 103 | + # Update a Personalized Data Policy (PDP) |
| 104 | + # Negate the previous filter (logical NOT). Note that in this case you |
| 105 | + # must treat the object as a dictionary - `pdp_filter.not` is invalid |
| 106 | + # syntax. |
| 107 | + pdp_filter['not'] = True |
| 108 | + pdp_request.name = 'Only show friends not attending the party' |
| 109 | + # A single PDP can contain multiple filters |
| 110 | + pdp_request.filters = [pdp_filter] |
| 111 | + pdp = datasets.update_pdp(dataset['id'], pdp['id'], pdp_request) |
| 112 | + domo.logger.info("Updated a Personalized Data Policy (PDP): {}, id: {}" |
| 113 | + .format(pdp['name'], pdp['id'])) |
| 114 | + |
| 115 | + # Delete a Personalized Data Policy (PDP) |
| 116 | + datasets.delete_pdp(dataset['id'], pdp['id']) |
| 117 | + domo.logger.info("Deleted a Personalized Data Policy (PDP): {}, id: {}" |
| 118 | + .format(pdp['name'], pdp['id'])) |
| 119 | + |
| 120 | + # Delete a DataSet |
| 121 | + datasets.delete(dataset['id']) |
| 122 | + domo.logger.info("Deleted DataSet {}".format(dataset['id'])) |
0 commit comments