diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index ef090c8..62dffee 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.5","generation_timestamp":"2024-10-28T16:14:54","documenter_version":"1.7.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.6","generation_timestamp":"2024-10-29T02:35:16","documenter_version":"1.7.0"}} \ No newline at end of file diff --git a/dev/api/index.html b/dev/api/index.html index 57cd7c0..c3e709c 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -1,2 +1,2 @@ -JacobiElliptic API · JacobiElliptic.jl

JacobiElliptic API

Index

Elliptic Integrals

JacobiElliptic.FukushimaAlg.KFunction

$K(m) = \int_0^{\pi/2}\frac{d\theta}{\sqrt{1-k^2\sin(\theta)^2}}.$

Returns the complete elliptic integral of the first kind.

Arguments

  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.EFunction

$E(m) = \int_0^{\pi/2}\sqrt{1-k^2\sin(\theta)^2}d\theta.$

Returns the complete elliptic integral of the second kind.

Arguments

  • m : Elliptic modulus
source

$E(\varphi|\, m) = \int_0^{\varphi}d\theta \sqrt{1-m\sin(\theta)^2}.$

Returns the incomplete elliptic integral of the second kind.

Arguments

  • φ : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.FFunction

$F(\varphi |\, m) = \int_0^{\varphi}\frac{d\theta}{\sqrt{1-m\sin(\theta)^2}}.$

Returns the incomplete elliptic integral of the first kind.

Arguments

  • φ : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.PiFunction

$\Pi(n|\,m)=\int_{0}^{1 }{\frac{1}{1-nt^{2}}}{\frac{dt}{\sqrt{\left(1-mt^{2}\right)\left(1-t^{2}\right)}}}.$

Returns the complete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • m : Elliptic modulus
source

$\Pi (n;\varphi \,|\,m)=\int _{0}^{\sin \varphi }{\frac {1}{1-nt^{2}}}{\frac {dt}{\sqrt {\left(1-mt^{2}\right)\left(1-t^{2}\right)}}}.$

Returns the incomplete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • φ : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.JFunction

$J (n;\varphi \,|\,m)=\frac{\Pi(n;\varphi|\, m) - F(\varphi|\,m)}{n}.$

Returns the associate incomplete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • φ : Amplitude
  • m : Elliptic modulus
source

$J(n;\varphi \,|\,m)=\frac{\Pi(n;\pi/2|\, m) - K(m)}{n}.$

Returns the associate complete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • m : Elliptic modulus
source

Jacobi Elliptic Functions

JacobiElliptic.FukushimaAlg.snFunction

$\text{sn}(u|\,m)=\sin\,\text{am}(u,m)$, where $\text{am}(u|\,m)=F^{-1}(u|\,m)$ is the Jacobi amplitude.

Returns the Jacobi Elliptic sn.

Arguments

  • u : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.cnFunction

$\text{cn}(u|\,m)=\cos\,\text{am}(u,m)$, where $\text{am}(u|\,m)=F^{-1}(u|\,m)$ is the Jacobi amplitude.

Returns the Jacobi Elliptic cn.

Arguments

  • u : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.dnFunction

$\text{dn}(u|\,m)=\frac{d}{d u}\,\text{am}(u,m)$, where $\text{am}(u|\,m)=F^{-1}(u|\,m)$ is the Jacobi amplitude.

Returns the Jacobi Elliptic dn.

Arguments

  • u : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.CarlsonAlg.amFunction
am(u::Real, m::Real, [tol::Real=eps(Float64)])

Returns amplitude, φ, such that u = F(φ | m)

Landen sequence with convergence to tol used if √(tol) ≤ m ≤ 1 - √(tol)

source
+JacobiElliptic API · JacobiElliptic.jl

JacobiElliptic API

Index

Elliptic Integrals

JacobiElliptic.FukushimaAlg.KFunction

$K(m) = \int_0^{\pi/2}\frac{d\theta}{\sqrt{1-k^2\sin(\theta)^2}}.$

Returns the complete elliptic integral of the first kind.

Arguments

  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.EFunction

$E(m) = \int_0^{\pi/2}\sqrt{1-k^2\sin(\theta)^2}d\theta.$

Returns the complete elliptic integral of the second kind.

Arguments

  • m : Elliptic modulus
source

$E(\varphi|\, m) = \int_0^{\varphi}d\theta \sqrt{1-m\sin(\theta)^2}.$

Returns the incomplete elliptic integral of the second kind.

Arguments

  • φ : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.FFunction

$F(\varphi |\, m) = \int_0^{\varphi}\frac{d\theta}{\sqrt{1-m\sin(\theta)^2}}.$

Returns the incomplete elliptic integral of the first kind.

Arguments

  • φ : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.PiFunction

$\Pi(n|\,m)=\int_{0}^{1 }{\frac{1}{1-nt^{2}}}{\frac{dt}{\sqrt{\left(1-mt^{2}\right)\left(1-t^{2}\right)}}}.$

Returns the complete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • m : Elliptic modulus
source

$\Pi (n;\varphi \,|\,m)=\int _{0}^{\sin \varphi }{\frac {1}{1-nt^{2}}}{\frac {dt}{\sqrt {\left(1-mt^{2}\right)\left(1-t^{2}\right)}}}.$

Returns the incomplete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • φ : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.JFunction

$J (n;\varphi \,|\,m)=\frac{\Pi(n;\varphi|\, m) - F(\varphi|\,m)}{n}.$

Returns the associate incomplete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • φ : Amplitude
  • m : Elliptic modulus
source

$J(n;\varphi \,|\,m)=\frac{\Pi(n;\pi/2|\, m) - K(m)}{n}.$

Returns the associate complete elliptic integral of the third kind.

Arguments

  • n : Characteristic
  • m : Elliptic modulus
source

Jacobi Elliptic Functions

JacobiElliptic.FukushimaAlg.snFunction

$\text{sn}(u|\,m)=\sin\,\text{am}(u,m)$, where $\text{am}(u|\,m)=F^{-1}(u|\,m)$ is the Jacobi amplitude.

Returns the Jacobi Elliptic sn.

Arguments

  • u : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.cnFunction

$\text{cn}(u|\,m)=\cos\,\text{am}(u,m)$, where $\text{am}(u|\,m)=F^{-1}(u|\,m)$ is the Jacobi amplitude.

Returns the Jacobi Elliptic cn.

Arguments

  • u : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.FukushimaAlg.dnFunction

$\text{dn}(u|\,m)=\frac{d}{d u}\,\text{am}(u,m)$, where $\text{am}(u|\,m)=F^{-1}(u|\,m)$ is the Jacobi amplitude.

Returns the Jacobi Elliptic dn.

Arguments

  • u : Amplitude
  • m : Elliptic modulus
source
JacobiElliptic.CarlsonAlg.amFunction
am(u::Real, m::Real, [tol::Real=eps(Float64)])

Returns amplitude, φ, such that u = F(φ | m)

Landen sequence with convergence to tol used if √(tol) ≤ m ≤ 1 - √(tol)

source
diff --git a/dev/index.html b/dev/index.html index 31aa6ad..fb77567 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,2 @@ -Home · JacobiElliptic.jl
+Home · JacobiElliptic.jl