forked from thierryjmartin/freqtrade-stuff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSMAOffset.py
executable file
·122 lines (97 loc) · 4.15 KB
/
SMAOffset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import numpy as np
import freqtrade.vendor.qtpylib.indicators as qtpylib
import datetime
from technical.util import resample_to_interval, resampled_merge
from datetime import datetime, timedelta
from freqtrade.persistence import Trade
from freqtrade.strategy import stoploss_from_open, merge_informative_pair, DecimalParameter, IntParameter, CategoricalParameter
SMA = 'SMA'
EMA = 'EMA'
# Buy hyperspace params:
buy_params = {
"base_nb_candles_buy": 30,
"buy_trigger": SMA,
"low_offset": 0.92,
}
# Sell hyperspace params:
sell_params = {
"base_nb_candles_sell": 41,
"high_offset": 1.026,
"sell_trigger": SMA,
}
class SMAOffset(IStrategy):
INTERFACE_VERSION = 2
# ROI table:
minimal_roi = {"0": 1}
# Stoploss:
stoploss = -0.5
base_nb_candles_buy = IntParameter(5, 80, default=buy_params['base_nb_candles_buy'], space='buy')
base_nb_candles_sell = IntParameter(5, 80, default=sell_params['base_nb_candles_sell'], space='sell')
low_offset = DecimalParameter(0.9, 0.99, default=buy_params['low_offset'], space='buy')
high_offset = DecimalParameter(0.99, 1.1, default=sell_params['high_offset'], space='sell')
buy_trigger = CategoricalParameter([SMA, EMA], default=buy_params['buy_trigger'], space='buy')
sell_trigger = CategoricalParameter([SMA, EMA], default=sell_params['sell_trigger'], space='sell')
# Trailing stop:
trailing_stop = False
trailing_stop_positive = 0.1
trailing_stop_positive_offset = 0
trailing_only_offset_is_reached = False
# Optimal timeframe for the strategy
timeframe = '5m'
use_sell_signal = True
sell_profit_only = False
process_only_new_candles = True
startup_candle_count = 30
plot_config = {
'main_plot': {
'ma_offset_buy': {'color': 'orange'},
'ma_offset_sell': {'color': 'orange'},
},
}
use_custom_stoploss = False
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# uncomment for plotting
#if self.buy_trigger.value == 'EMA':
# dataframe['ma_buy'] = ta.EMA(dataframe, timeperiod=self.base_nb_candles_buy.value)
#else:
# dataframe['ma_buy'] = ta.SMA(dataframe, timeperiod=self.base_nb_candles_buy.value)
#if self.sell_trigger.value == 'EMA':
# dataframe['ma_sell'] = ta.EMA(dataframe, timeperiod=self.base_nb_candles_sell.value)
#else:
# dataframe['ma_sell'] = ta.SMA(dataframe, timeperiod=self.base_nb_candles_sell.value)
#dataframe['ma_offset_buy'] = dataframe['ma_buy'] * self.low_offset.value
#dataframe['ma_offset_sell'] = dataframe['ma_sell'] * self.high_offset.value
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
if self.buy_trigger.value == EMA:
dataframe['ma_buy'] = ta.EMA(dataframe, timeperiod=int(self.base_nb_candles_buy.value))
else:
dataframe['ma_buy'] = ta.SMA(dataframe, timeperiod=int(self.base_nb_candles_buy.value))
dataframe['ma_offset_buy'] = dataframe['ma_buy'] * self.low_offset.value
dataframe.loc[
(
(dataframe['close'] < dataframe['ma_offset_buy']) &
(dataframe['volume'] > 0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
if self.sell_trigger.value == EMA:
dataframe['ma_sell'] = ta.EMA(dataframe, timeperiod=int(self.base_nb_candles_sell.value))
else:
dataframe['ma_sell'] = ta.SMA(dataframe, timeperiod=int(self.base_nb_candles_sell.value))
dataframe['ma_offset_sell'] = dataframe['ma_sell'] * self.high_offset.value
dataframe.loc[
(
(dataframe['close'] > dataframe['ma_offset_sell']) &
(dataframe['volume'] > 0)
),
'sell'] = 1
return dataframe