-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtwo_squares_presentation.tex
633 lines (502 loc) · 18.4 KB
/
two_squares_presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage{latexsym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{graphicx}
\usepackage{caption}
\usepackage{hyperref}
\usetheme{Pittsburgh}
\usecolortheme{spruce}
\setbeamertemplate{navigation symbols}{}
\logo{\includegraphics[height=0.5cm]{Academy_Logos_Master_Lexington_Campus_Thin_Cube.jpg}}
%% \setlength{\parindent}{2ex}
\title{Fermat's Two Squares Theorem}
\subtitle{AKA Fermat's Christmas Theorem\\A tour through two proofs}
\author{Dave Neary}
\date{April 2021}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\section{Fermat's statement of the Two Squares "Theorem"}
\begin{frame}
\frametitle{Fermat's Christmas Theorem}
\begin{figure}
\includegraphics[width=\linewidth]{extrait_letrre_du_25_decembre_1640.png}
\caption*{Original statement of "Fermat's Christmas Theorem"}
\label{fig:fermat1}
\end{figure}
Fermat wrote this statement, without proof, in a letter to Mersenne, dated December
25th, 1640.
\end{frame}
\begin{frame}
\frametitle{Fermat's Christmas Theorem: Statement}
"On the subject of right triangles, here are my findings:
\begin{itemize}
\item Every prime number that is one more than a multiple of four can be written in exactly
one way as the sum of two squares, and in one way as the hypotenuse of a right triangle
\item The same number and its square can be written in exactly one way as the sum of two squares."
\end{itemize}
In modern terms: All primes of the form $4k+1$, and their squares, can be written as the sum of two
squares of positive integers in exactly one way.
\end{frame}
\begin{frame}
\frametitle{Which primes are sums of squares?}
\begin{table}
\begin{tabular}{| r | c || r | c |}
\hline
Primes & Sum of squares & Primes & Sum of squares \\
\hline
2 & $1^2 + 1^2$ & 23 & \textcolor{red}{\textbf{\textemdash}} \\
3 & \textcolor{red}{\textbf{\textemdash}} & 29 & $2^2 + 5^2$ \\
5 & $1^2 + 2^2$ & 31 & \textcolor{red}{\textbf{\textemdash}} \\
7 & \textcolor{red}{\textbf{\textemdash}} & 37 & $1^2 + 6^2$ \\
11 & \textcolor{red}{\textbf{\textemdash}} & 41 & $4^2 + 5^2$ \\
13 & $2^2+3^2$ & 43 & \textcolor{red}{\textbf{\textemdash}} \\
17 & $1^2 + 4^2$ & 47 & \textcolor{red}{\textbf{\textemdash}} \\
19 & \textcolor{red}{\textbf{\textemdash}} & 53 & $2^2 + 7^2$ \\
\hline
\end{tabular}
\caption*{The first few primes, written as sums of two squares}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Can any primes of the form $4k+3$ be a sum of squares?}
For all integers $x,y$:
\[ x^2, y^2 \equiv 0 \text{ or } 1 \pmod{4} \]
\[ x^2 + y^2 \in \{0, 1, 2\} \pmod{4} \]
Therefore:
\[ x^2 + y^2 \not \equiv 3 \pmod{4} \]
\end{frame}
\begin{frame}
\frametitle{Leonhard Euler, 1747}
\begin{figure}
\includegraphics[width=0.3\textwidth]{594px-Leonhard_Euler.jpg}
\caption*{Leonard Euler}
\label{fig:euler1}
\end{figure}
The first published proof, using a method called "infinite descent" was
published in 1747 by Leonhard Euler.
\end{frame}
%% \begin{frame}
% \frametitle{Leonhard Euler, 1747}
% \begin{itemize}
% \item The sums of squares are closed under multiplication:
% $(a^2+b^2)(c^2+d^2) = (ac-bd)^2 + (ad-bc)^2 $
% \item If a sum of squares is divisible by a prime of the form $p^2 + q^2$
% then its quotient is also a sum of squares
% \item If a sum of squares is divisible by a number which is not a sum of
% two squares, then the quotient also has a factor which is not a
% sum of two squares
% \item If $a$ and $b$ are relatively prime, then every factor of $a^2+b^2$
% is a sum of two squares
%
% \end{itemize}
%% \end{frame}
\section{Dedekind's proof using Gaussian integers}
\begin{frame}
\frametitle{Dedekind's proof using Gaussian Integers (1894)}
%% \frametitle{Richard Dedekind, 1894}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.8\textwidth]{Richard_Dedekind_1900s.jpg}
\end{center}
\column{0.5 \textwidth}
Richard Dedekind, a German mathematician born in 1831.
His domain of research was Number Theory, and his doctoral advisor was
Carl Friedrich Gauss.
He published two proofs of Fermat's Two Squares Theorem using the ring of
Gaussian integers, one in 1877, and the one we will explore in 1894.
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Prime and composite numbers}
A reminder of what it means for a whole number to be prime or composite:
\begin{itemize}
\item If $p$ is prime, then it has only two positive integer factors, itself and 1.
\item If a prime $p$ divides a composite number $n = ab$, then $p$ divides $a$, or $p$ divides $b$
\item If a number $q$ divides a number $ab$ with $q>a, q>b$, then $q$ must be composite.
For example, $12 | 72 = 8 \cdot 9$, and $12>8$, $12>9$, so 12 must be composite.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Gaussian Integers}
The Gaussian integers $\mathbb{Z}[i]$ is the set
$\{a+ib:a, b \in \mathbb{Z}, i^2 = -1 \}$
\begin{itemize}
\item $\mathbb{Z}[i]$ is closed under addition: $a+ib + c+id = (a+c) + i(b+d)$
\item It is also closed under multiplication:
$(a+ib)(c+id) = ac + ibc + iad + i^2bd = (ac-bd) + i(ad+bc)$
\end{itemize}
In the same way as we have unique factorization in $\mathbb{N}$, we have the same thing in
$\mathbb{Z}[i]$! In particular, the same rules for determining whether a number is prime or
composite apply to the Gaussian integers.
\end{frame}
\begin{frame}
\frametitle{Factoring "primes"}
An interesting characteristic of the Gaussian integers is that we can factor some
expressions that do not have a factorization over the real numbers. For example:
\[a^2 + b^2 = a^2 - i^2b^2 = (a+ib)(a-ib) \]
In this way, we can factor numbers that are prime in the natural numbers!
\begin{align*}
5 = 1^2 + 2^2 &= (1+2i)(1-2i) \\
13 = 2^2 + 3^2 &= (2+3i)(2-3i)
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Determining size of $a+ib$}
Earlier, I said "if a number $q$ divides a number $ab$ with $q>a, q>b$, then $q$ must be composite".
But how can we tell if one Gaussian integer is bigger than another?
We define a "norm" function $N(x):\mathbb{Z}[i]\rightarrow\mathbb{N}$:
\begin{itemize}
\item $N(a+ib) = a^2 + b^2$, the square of the length from the origin to the point.
\item The norm function is multiplicative: $N(xy) = N(x)N(y)$
\end{itemize}
Since the norm function is multiplicative, we know that if $x = qy$, then $N(y)|N(x)$.
Also, if $x | ab$ and $N(x) > N(a), N(x) > N(b)$, then $x$ must be composite in $\mathbb{Z}[i]$.
\end{frame}
%% \begin{frame}
% \frametitle{Euclidean division on $\mathbb{Z}[i]$}
%
% \only<1>{
% Let's find the GCD of $11+7i$ and $18-i$ to see how it works.
% \begin{align*}
% N(11+7i) &= 11^2 + 7^2 = 170\\
% N(18-i) &= 18^2 + 1^2 = 325 \\
% \frac{18 - i}{11+7i} &= \frac{(18-i)(11-7i)}{(11+7i)(11-7i)}\\
% &= \frac{205 - 137i}{170}
% \end{align*}
% We can round this to the nearest Gaussian integer $1-i$ to get:
% \[ 18-i = (1-i)(11+7i) + 3i \]
%}
% \only<2>{
% Now we repeat the step to get:
% \[ \frac{11 + 7i}{3i} = \frac{7}{3} -\frac{11i}{3} \]
% And we round to $2-4i$:
% \[ 11 + 7i = (2-4i)(3i) + i \]
% And since $i$ is a unit (that is, a number with a norm of 1), the greatest common divisor is 1.
% }
%
%% \end{frame}
\begin{frame}
\frametitle{Fermat's Little Theorem}
Fermat's Little Theorem states that for a prime $p$, and any number $a$ coprime with $p$
(that is, $\gcd(a,p) = 1$):
\[ a^{p-1} \equiv 1 \pmod{p} \]
In fact, we can go further, and say that for every $a\not \equiv 0 \pmod{p}$, there exists
an exponent $e$ such that $a^{e} \equiv 1 \pmod{p}$, and $e | (p-1)$.
\end{frame}
\begin{frame}
\frametitle{Quadratic residues}
In modular arithmetic, a quadratic residue is a number that has a square root
$\pmod{p}$. For example, looking at the numbers $\pmod{7}$, we see that only 0, 1, 2,
and 4 have square roots $\pmod{7}$.
\begin{table}
\begin{tabular}{| c | c | c | c | c | c |}
\hline
$a$ & $a^2$ & $a^3$ & $a^4$ & $a^5$ & $a^6$ \\
\hline
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 4 & 1 & 2 & 4 & 1 \\
3 & 2 & 6 & 4 & 5 & 1 \\
4 & 2 & 1 & 4 & 2 & 1 \\
5 & 4 & 6 & 2 & 3 & 1 \\
6 & 1 & 6 & 1 & 6 & 1 \\
\hline
\end{tabular}
\caption*{Powers of $a \pmod{7}$}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Dedekind's proof (1)}
From Fermat's Little Theorem, we know that $a^{p-1} \equiv 1 \pmod{p}$ for all
$a\neq 0 \pmod{p}$. We also can show that $(-1)^{\frac{p-1}{2}} = 1$ since
$p = 4k+1, (-1)^{\frac{p-1}{2}} = (-1)^{2k} \equiv 1 \pmod{p}$.
$1$ has two square roots $\pmod{p}$: itself and $-1$. For a quadratic non-residue $a$,
$a^{\frac{p-1}{2}} \not \equiv 1 \pmod{p}$, so $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.
Therefore, for a quadratic non-residue $a$, $(a^{\frac{p-1}{4}})^2 = -1 \pmod{p}$.
\end{frame}
\begin{frame}
\frametitle{Dedekind's proof (2)}
If we can find a quadratic non-residue $a$, then we can set $b \equiv a^{\frac{p-1}{4}} \pmod{p}$
and we are guaranteed that $b^2 \equiv -1 \pmod{p}$, or $p | b^2+1$.
Factoring $b^2+1$ over $\mathbb{Z}[i]$ we get:
\[b^2 + 1 = (b+i)(b-i) \]
But since $b<p$, $N(b+i)<N(p)$, so $p$ does not divide either of these factors - which means
that $p$ must be divisible by some other Gaussian prime factors $(n+im)(n-im) = p$.
\end{frame}
\begin{frame}
\frametitle{Quadratic residues mod 41}
Let's look at $a,a^2, a^{20} \pmod{41}$.
\begin{table}
\begin{tabular}{| c | c | c || c | c | c ||}
\hline
$a$ & $a^2$ & $a^{20}$ & $a$ & $a^2$ & $a^{20}$ \\
\hline
1 & 1 & 1 & 11 & 39 & -1 \\
2 & 4 & 1 & 12 & 21 & -1 \\
3 & 9 & -1 & 13 & 5 & -1 \\
4 & 16 & 1 & 14 & 32 & -1 \\
5 & 25 & 1 & 15 & 20 & -1 \\
6 & 36 & -1 & 16 & 10 & 1 \\
7 & 8 & -1 & 17 & 2 & -1 \\
8 & 23 & 1 & 18 & 37 & 1 \\
9 & 40 & 1 & 19 & 33 & -1 \\
10 & 18 & 1 & 20 & 31 & 1 \\
\hline
\end{tabular}
\caption*{Powers of $a \pmod{41}$}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Finding the squares (1)}
We have proved that there must be some factors of $p$ in $\mathbb{Z}[i]$, but we
have not found them. The tricky part is finding a square root of $-1$. To do this,
we look for a quadratic non-residue of $p$ - that is, a number $a$ where
$a^{\frac{p-1}{2}} = -1$.
Let's try an example with $p=41 = 4(10)+1$ to see how it works.
\[ 3^4 = 81 \equiv -1 \pmod{41} \]
\[ 3^{20} = (-1)^5 \equiv -1 \pmod{41} \]
So 3 is a non-residue of 41. Now to find a square root of -1, find $3^{10}$:
\[ 3^{10} = 9\times(3^4)^2 \equiv 9 \pmod{41} \]
Therefore, 41 divides $9^2 + 1 = 82$
\end{frame}
\begin{frame}
\frametitle{Finding the squares (2)}
We know that $41|9^2+1 = (9+i)(9-i)$. How we can find the prime factors of 41
using the Euclidean division algorithm with either of these factors:
\begin{align*}
\frac{41}{9-i} &= \frac{(41)(9+i)}{9^2+1^2} \\
&= \frac{1}{82}(369 + 41i) \\
41 &= 4(9-i) + (5+4i) \\
9-i &= (1-i)(5+4i)
\end{align*}
We have calculated that $5+4i$, is the GCD of $41$ and $9-i$, and it is easy to
check that $41 = 5^2 + 4^2$.
\end{frame}
\section{Zagier's "one-sentence proof"}
\begin{frame}
\frametitle{Don Zagier, 1990}
\begin{figure}
\includegraphics[width=0.4\textwidth]{480px-DonZagier-talking.jpeg}
\caption*{Don Zagier}
\label{fig:zagier1}
\end{figure}
In 1990, Don Zagier published a "one-sentence proof", based on a prior geometric proof.
\end{frame}
\begin{frame}
\frametitle{Don Zagier proof}
{\em A one-sentence proof that every prime $p\equiv 1 \pmod{4}$ is a sum of two squares.}
The involution on the finite set $S = \{(x,y,z) \in \mathbb{N}^3:x^2+4yz = p \}$
defined by:
\begin{equation*}
(x,y,z) \rightarrow
\begin{cases}
(x + 2z, z, y - x - z) & \text{if } x < y-z \\
(2y - x, y, x - y + z) & \text{if } y - z < x < 2y \\
(x - 2y, x - y + z, y) & \text{if } x > 2y
\end{cases}
\end{equation*}
has exactly one fixed point, so $|S|$ is odd and the involution defined by
$(x,y,z) \rightarrow(x,z,y)$ also has a fixed point.
\end{frame}
\begin{frame}
\frametitle{What!?!?!}
\begin{center}
\includegraphics[width=0.8\textwidth]{side-eye-chloe.jpg}
\end{center}
\end{frame}
\begin{frame}
\frametitle{What is an involution?}
An {\em involution} is a function which is its own inverse. That is:
\[ f: A \rightarrow A : f(f(x)) = x \text{ for all } x \in A \]
Examples:
\begin{itemize}
\item $ f:\mathbb{R}^+ \rightarrow \mathbb{R}^+: f(x) = \frac{1}{x} $
\item $ f:\mathbb{R}/\{-1\} \rightarrow \mathbb{R}/\{-1\}: f(x) = \frac{1-x}{1+x} $
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Involutions on finite sets}
Every involution on a finite set with an odd number of elements has at least one fixed point.
Involutions are "swapping" functions - if you have an odd number of elements, at least one of
the elements must not get swapped.
\end{frame}
\begin{frame}
\frametitle{What about $S = \{x^2 + 4yz = p\}$?}
For any prime of the form $4k+1$ we are guaranteed to find solutions of the form $x^2 + 4yz$
for $x, y, z \in \mathbb{N}$. One obvious solution: $x=1, y=1, z=k$.
For $p=17$:
\begin{table}
\begin{tabular}{|c|c|c|}
\hline
$x$ & $y$ & $z$ \\
\hline
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 4 & 1 \\
3 & 1 & 2 \\
3 & 2 & 1 \\
\hline
\end{tabular}
\caption*{Possible values of $x,y,z$ for $p=17$}
\end{table}
\end{frame}
\begin{frame}
\frametitle{What about $S = \{x^2 + 4yz = p\}$?}
\begin{columns}
\column{0.5 \textwidth}
For $p=17$:
\begin{table}
\begin{tabular}{|c|c|c|}
\hline
$x$ & $y$ & $z$ \\
\hline
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 4 & 1 \\
3 & 1 & 2 \\
3 & 2 & 1 \\
\hline
\end{tabular}
\caption*{Possible values of $x,y,z$ for $p=17$}
\end{table}
\column{0.5 \textwidth}
Notice that we get pairs of solutions when $y \neq z$ by swapping $y$
and $z$.
Also, notice that the number of solutions is odd. If we can prove it is
{\em always} odd, then we are guaranteed at least one solution with $y=z$.
If $y=z$, then $x^2+4yz = x^2 + (2y)^2$ is a sum of two squares, and the
theorem is proved.
\end{columns}
\end{frame}
\begin{frame}
\frametitle{The complicated involution}
\begin{equation*}
(x,y,z) \rightarrow
\begin{cases}
(x + 2z, z, y - x - z) & \text{if } x < y-z \\
(2y - x, y, x - y + z) & \text{if } y - z < x < 2y \\
(x - 2y, x - y + z, y) & \text{if } x > 2y
\end{cases}
\end{equation*}
Where did this come from? What does it represent? How do we prove that it is an involution?
\end{frame}
%% \begin{frame}
% \frametitle{The function is a partition}
%
% First, let's show that the cases are all that there are. By definition,
% $0<x,y,z \in \mathbb{N}$. If $x = y-z$ then:
% \begin{align*}
% x^2 + 4yz &= (y-z)^2 + 4yz \\
% &= y^2+2yz+z^2 \\
% &= (y+z)^2
% \end{align*}
%
% Similarly, if $x=2y$, then:
% \begin{align*}
% x^2 + 4yz &= (2y)^2 + 4yz \\
% &= 4y(y+z)
% \end{align*}
% In both cases, $x^2+4yz$ is not a prime.
%
%% \end{frame}
\begin{frame}
\frametitle{Let's talk about windmills}
\begin{center}
\includegraphics[width=0.5\textwidth]{windmill.jpg}
\end{center}
\end{frame}
\begin{frame}
\frametitle{A geometric interpretation}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{windmill_example_levels.jpg}
\end{center}
\caption*{ $(3,1,2) \leftrightarrow (1,4,1)$}
\label{fig:windmill1}
\end{figure}
We interpret $x$ as the side of a square, with $y$ the base from the top left corner and
$z$ the height of 4 symmetrically arranged rectangles.
\end{frame}
\begin{frame}
\frametitle{A geometric interpretation}
\begin{columns}
\column{0.5 \textwidth}
The translations from one arrangement to another represent the different ways to wrap
rectangles around a square.
\vspace{1ex}
These are all of the transformations for $p=17$.
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.9\textwidth]{Zagier_involution_levels.jpg}
\end{center}
\end{columns}
\end{frame}
%% \begin{frame}
% \frametitle{A geometric interpretation}
%
% Each translation represents a different type of transformation which conserves the silhouette.
% \begin{figure}
% \begin{center}
% \includegraphics[width=0.8\textwidth]{windmills.png}
% \end{center}
% \caption*{All the translations (and mappings) (thank you Mathologer)}
% \label{fig:windmill_mathologer}
% \end{figure}
%% \end{frame}
\begin{frame}
\frametitle{A unique fixed point}
\begin{columns}
\column{0.5 \textwidth}
In all of the shapes we have seen, there are two solutions with the same silhouette. Except one.
\vspace{1ex}
When $x=1, y=1, z=k$, we get a big "plus" sign.
This point is a fixed point for the mapping, and it is guaranteed to be the only one!
\vspace{1ex}
\column{0.5 \textwidth}
\begin{multline*}
(x,y,z) \rightarrow \\ (2y-x, y, x-y+z)
\end{multline*}
\begin{center}
\includegraphics[width=0.6\textwidth]{Zagier_fixed_point.jpg}
\end{center}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Fixed point in standard involution}
\begin{columns}
\column{0.5 \textwidth}
There will {\em always} be an odd number of solutions to $x^2+4yz = p$, and the
alternative involution on the same set $(x,y,z) \rightarrow (x,z,y)$ {\em also} has a fixed
point $y = z$.
\vspace{1ex}
In our example of $p=17$, we see that
\[ p = 1^2 + 4(2)(2) = 1^2 + 4^2 \]
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.8\textwidth]{basic_involution_levels.jpg}
\end{center}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Thank you! There's more! References}
\begin{itemize}
\item I learned about this theorem from Mathologer's awesome video about Zagier's proof:
\href{https://www.youtube.com/watch?v=DjI1NICfjOk}{Why was this visual proof missed
for 400 years?}
\item You can get {\em all} the proofs of Fermat's two squares theorem (including
a reference to a new proof from 2016!) on Wikipedia:
\href{https://bit.ly/3gpMy7x}{Proofs of Fermat's theorem on sums of two squares}
\item If you're interested in some additional materials that use Gaussian integers, you might
enjoy 3blue1brown's video on Pythagorean triples:
\href{https://www.youtube.com/watch?v=QJYmyhnaaek}{All possible Pythagorean triples, visualized}
\end{itemize}
\end{frame}
\end{document}