-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpells_equations.tex
300 lines (215 loc) · 8.2 KB
/
pells_equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
\documentclass[t]{beamer}
\usepackage[utf8]{inputenc}
\usepackage{latexsym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{graphicx}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{hyperref}
\usepackage{tikz}
\usetheme{Pittsburgh}
\usecolortheme{spruce}
\setbeamertemplate{navigation symbols}{}
\logo{\includegraphics[height=0.5cm]{aops-logo.png}}
%% \setlength{\parindent}{2ex}
\title{The Wonderful World of Pell's Equations}
\author{Dave Neary}
\date{January 2023}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\section{A number puzzle}
\begin{frame}
\frametitle{Triangular square numbers}
\begin{figure}
\centering
\begin{subfigure}{.4\textwidth}
\centering
\begin{tikzpicture}
\fill [blue,draw=black] (0,0) circle(0.25cm);
\fill [blue,draw=black] (0,-0.6) circle(0.25cm) (0.6,-0.6) circle(0.25cm);
\fill [blue,draw=black] (0,-1.2) circle(0.25cm) (0.6,-1.2) circle(0.25cm) (1.2,-1.2) circle(0.25cm);
\fill [blue,draw=black] (0,-1.8) circle(0.25cm) (0.6,-1.8) circle(0.25cm) (1.2,-1.8) circle(0.25cm) (1.8,-1.8) circle(0.25cm);
\end{tikzpicture}
\caption*{Triangular numbers}
\label{fig:triangular}
\end{subfigure}
\begin{subfigure}{.4\textwidth}
\centering
\begin{tikzpicture}
\fill [blue,draw=black] (0,0) circle(0.25cm) (0.6,0) circle(0.25cm) (1.2,0) circle(0.25cm) (1.8,0) circle(0.25cm);
\fill [blue,draw=black] (0,-0.6) circle(0.25cm) (0.6,-0.6) circle(0.25cm) circle(0.25cm) (1.2,-0.6) circle(0.25cm) (1.8,-0.6) circle(0.25cm);
\fill [blue,draw=black] (0,-1.2) circle(0.25cm) (0.6,-1.2) circle(0.25cm) (1.2,-1.2) circle(0.25cm) circle(0.25cm) (1.8,-1.2) circle(0.25cm);
\fill [blue,draw=black] (0,-1.8) circle(0.25cm) (0.6,-1.8) circle(0.25cm) (1.2,-1.8) circle(0.25cm) (1.8,-1.8) circle(0.25cm) circle(0.25cm);
\end{tikzpicture}
\caption*{Square numbers}
\label{fig:squares}
\end{subfigure}
\end{figure}
Can you find triangular numbers (of the form $1+2+3+\cdots+n$) that are also perfect squares ($b^2$ for an integer $b$)?
\end{frame}
\begin{frame}
\frametitle{Triangular numbers}
Can we find a formula for the $n$th triangular number:
\[T_n = 1+2+3+\cdots + n \]
\end{frame}
\begin{frame}
\frametitle{Triangular Square numbers}
We are looking for solutions to:
\begin{align*}
\frac{1}{2}(a)(a+1) &= b^2 \\
a^2 + a &= 2b^2 \\
4a^2 + 4a &= 8b^2 \\
(2a+1)^2 - 8b^2 &= 1
\end{align*}
Setting $m=2a+1, n=2b$, we get the Pell's equation:
\[ m^2 - 2n^2 = 1 \]
\end{frame}
\begin{frame}
\frametitle{Pell's Equations: $m^2 - dn^2 = 1$}
\[ m^2 - dn^2 = 1 \]
Equations of this form are called Pell's equations after John Pell, who
translated a text on the equation into English. Euler thought it was
original work, and named the equation after him.
\vspace{1em}Equations of this form have been studied for centuries (especially by
Indian mathematicians Brahmagupta and Bh\=askara II).
\vspace{1em}Geometrically, the curve is a hyperbola, but tonight, we will
explore its connections to number theory.
\end{frame}
\begin{frame}
\frametitle{Finding solutions}
By inspection, we can find $m=3, n=2$ works:
\[ 3^2 - 2(2^2) = 9 - 8 = 1 \]
But can we find other solutions?\\
It's a bit trickier!
\vspace{2em}
What does $m^2 - 2n^2$ remind you of?
\end{frame}
\begin{frame}
\frametitle{Factoring as a difference of squares}
\[ m^2 - 2n^2 = (m-\sqrt{2}n)(m+\sqrt{2}n) \]
But now if we have two numbers of the form $m^2-2n^2$ what happens
when we multiply these factors?
\begin{align*}
(a-\sqrt{2}b)(c-\sqrt{2}d) &= ac - \sqrt{2}bc - \sqrt{2}ad + 2bd \\
&= (ac+2bd)-\sqrt{2}(bc+ad)
\end{align*}
\begin{align*}
(a+\sqrt{2}b)(c+\sqrt{2}d) &= ac + \sqrt{2}bc + \sqrt{2}ad + 2bd \\
&= (ac+2bd)-\sqrt{2}(bc+ad)
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Numbers $a+\sqrt{2}b$ are closed under multiplication}
This means is that when we multiply numbers of the form $a+\sqrt{2}b$
together, they give a result of the same form!
\vspace{1em}
These numbers are an extension to the integers - we can add, subtract,
and multiply numbers $a+\sqrt{2}b$ together and the result is in the
same form.
\vspace{1em}
What's more:
\[(a-\sqrt{2}b)(c-\sqrt{2}d) = A-\sqrt{2}B \]
\[(a+\sqrt{2}b)(c+\sqrt{2}d) = A+\sqrt{2}B \]
\end{frame}
\begin{frame}
\frametitle{Generating larger solutions}
What this means is that when we multiply numbers of the form $a^2-2b^2$,
we can make the product into the form $A^2 - 2B^2$ for some integers $A,B$.
But we can now generate larger solutions to our problem!
\[ (3-2\sqrt{2})^2(3+2\sqrt{2})^2 = (17 - 12\sqrt{2})(17 + 12\sqrt{2}) = 1^2 \]
\[ (3-2\sqrt{2})^3(3+2\sqrt{2})^3 = (99 - 70\sqrt{2})(99 + 70\sqrt{2}) = 1^3 \]
There are an infinite number of solutions!
\end{frame}
\section{Approximating square roots}
\begin{frame}
\frametitle{Notice anything?}
\[3^2 - 2(2^2) = 1, \frac{3}{2} = 1.5 \]
\[17^2 - 2(12^2) = 1, \frac{17}{12} = 1.41666\cdots \]
\[99^2 - 2(70^2) = 1, \frac{99}{70} = 1.414285\cdots \]
These numbers are getting close to a well known constant... why?
\end{frame}
\begin{frame}
\frametitle{Approximating $\sqrt{2}$}
If we take large solutions to:
\[ a^2 - 2b^2 = 1 \]
then:
\[ \left(\frac{a}{b}\right)^2 = 2 + \frac{1}{b^2} \]
and as $b$ gets large, $\frac{a}{b}$ gets very close to $\sqrt{2}$.
\vspace{1em}
Bonus trick: if one estimate is $\frac{a}{b}$, can you prove that the
next one is $\frac{3a+4b}{2a+3b}$ and explain why?
\end{frame}
\begin{frame}
\frametitle{Choosing a different value for $d$}
This works just as well for other values of $d$. For example,
with $d=5$:
\[ m^2 - 5n^2 = 1 \]
has a solution at $a=9,b=4$: $9^2 - 5(4^2) = 1$.
We can get very good estimates for $\sqrt{5}$ by raising this solution
to different powers:
\[ (9-4\sqrt{5})^2 = 161 - 72\sqrt{5} \]
\[ \frac{161}{72} = 2.2361\cdots, \sqrt{5} = 2.23606\cdots \]
\end{frame}
\section{Finding smallest solutions for $m^2-dn^2=1$}
\begin{frame}
\frametitle{Finding the smallest solution}
Finding $a=9,b=4$ for $d=5$ was a little trickier than for $d=2$ - in
general, how can we find the smallest solution without checking every number?
\vspace{1em}
For example: what is the smallest solution for $d=10$? Or $d=13$?
\end{frame}
\begin{frame}
\frametitle{Continuous fractions!}
Enter continued fractions! Any positive real number can be expressed as a
continuous fraction of the form:
\[ x = a_0 + \frac{1}{a_1 + \frac{1}{a_2+\frac{1}{a_3+\cdots}}} \]
where every one of the $\{a_i\}$ are whole numbers.
\vspace{1em}
When written like this, we can find good rational approximations to the
number $x$ by stopping the calculation after a few numbers. These
approximations are called "convergents".
\end{frame}
\begin{frame}
\frametitle{Calculating a continued fraction for $\sqrt{10}$}
Since $3 < \sqrt{10} < 4$:
\[ \sqrt{10} = 3 + (\sqrt{10} - 3) \]
\end{frame}
\begin{frame}
\frametitle{Calculating the convergents for $\sqrt{10}$}
We found on the last slide that:
\[ \sqrt{10} = 3 + \frac{1}{6 + \frac{1}{6 + \frac{1}{6 + \cdots}}} \]
We can now calculate the first few convergents:
\[ 3 + \frac{1}{6} = \frac{19}{6} \]
\[ 19^2 - 10(6^2) = 361 - 10(36) = 1 \]
And we have our smallest solution!
\end{frame}
\begin{frame}
\frametitle{Complicated solutions}
There are some famously difficult first solutions, for example: $d = 13$
\[ \sqrt{13} = 3 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{6+\cdots}}}}}\]
The convergents for this continued fraction are:
\[ \frac{3}{1}, \frac{4}{1}, \frac{7}{2}, \frac{11}{3}, \frac{18}{5}, \frac{119}{33}, \frac{137}{38}, \frac{256}{71}, \frac{393}{109}, \frac{649}{180}, \cdots \]
The smallest solution to $m^2-13n^2=1$ is
\[ 649^2 - 13(180^2) = 1 \]
Challenge: Can you find the smallest solution to $m^2-41n^2=1$?
\end{frame}
\begin{frame}
\frametitle{Conclusion}
The Pell's equations pull together diverse fields of mathematics:
\vspace{1em}
\begin{itemize}
\item Number theory - extensions to the integers
\item Rational approximations for irrational numbers
\item Continued fractions
\item Algebraic geometry
\end{itemize}
\vspace{1em}
These equations continue to be relevant today!
\end{frame}
\end{document}