forked from nashory/pggan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
executable file
·626 lines (574 loc) · 24.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import dataloader as DL
from config import config
import network as net
from math import floor, ceil
import os, sys
import torch
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.optim import Adam
from tqdm import tqdm
import tf_recorder as tensorboard
import utils as utils
import numpy as np
from multiprocessing import Manager, Value
from torch.autograd import grad as torch_grad
# import tensorflow as tf
def safe_reading(file):
value = file.read()
try:
value = int(value)
return value
except:
return 0
def accelerate(value):
return value * 2
class trainer:
def __init__(self, config):
self.config = config
if torch.cuda.is_available():
self.use_cuda = True
torch.set_default_tensor_type("torch.cuda.FloatTensor")
else:
self.use_cuda = False
torch.set_default_tensor_type("torch.FloatTensor")
self.nz = config.nz
self.optimizer = config.optimizer
self.resl = 2 # we start from 2^2 = 4
self.lr = config.lr
self.eps_drift = config.eps_drift
self.smoothing = config.smoothing
self.max_resl = config.max_resl
self.accelerate = 1
self.wgan_target = 1.0
self.trns_tick = config.trns_tick
self.stab_tick = config.stab_tick
self.TICK = config.TICK
self.skip = False
self.globalIter = 0
self.globalTick = 0
self.wgan_epsilon = 0.001
self.stack = 0
self.wgan_lambda = 10.0
self.just_passed = False
if self.config.resume:
saved_models = os.listdir("repo/model/")
iterations = list(
map(lambda x: int(x.split("_")[-1].split(".")[0][1:]), saved_models)
)
self.last_iteration = max(iterations)
selected_indexes = np.where([x == self.last_iteration for x in iterations])[
0
]
G_last_model = [
saved_models[x] for x in selected_indexes if "gen" in saved_models[x]
][0]
D_last_model = [
saved_models[x] for x in selected_indexes if "dis" in saved_models[x]
][0]
saved_grids = os.listdir("repo/save/grid")
global_iterations = list(map(lambda x: int(x.split("_")[0]), saved_grids))
self.globalIter = self.config.save_img_every * max(global_iterations)
print(
"Resuming after "
+ str(self.last_iteration)
+ " ticks and "
+ str(self.globalIter)
+ " iterations"
)
G_weights = torch.load("repo/model/" + G_last_model)
D_weights = torch.load("repo/model/" + D_last_model)
self.resuming = True
else:
self.resuming = False
self.kimgs = 0
self.stack = 0
self.epoch = 0
self.fadein = {"gen": None, "dis": None}
self.complete = {"gen": 0, "dis": 0}
self.phase = "init"
self.flag_flush_gen = False
self.flag_flush_dis = False
self.flag_add_noise = self.config.flag_add_noise
self.flag_add_drift = self.config.flag_add_drift
# network and cirterion
self.G = net.Generator(config)
self.D = net.Discriminator(config)
print("Generator structure: ")
print(self.G.model)
print("Discriminator structure: ")
print(self.D.model)
self.mse = torch.nn.MSELoss()
if self.use_cuda:
self.mse = self.mse.cuda()
torch.cuda.manual_seed(config.random_seed)
self.G = torch.nn.DataParallel(self.G, device_ids=[0]).cuda(device=0)
self.D = torch.nn.DataParallel(self.D, device_ids=[0]).cuda(device=0)
# define tensors, ship model to cuda, and get dataloader.
self.renew_everything()
if self.resuming:
self.resl = G_weights["resl"]
self.globalIter = G_weights["globalIter"]
self.globalTick = G_weights["globalTick"]
self.kimgs = G_weights["kimgs"]
self.epoch = G_weights["epoch"]
self.phase = G_weights["phase"]
self.fadein = G_weights["fadein"]
self.complete = G_weights["complete"]
self.flag_flush_gen = G_weights["flag_flush_gen"]
self.flag_flush_dis = G_weights["flag_flush_dis"]
self.stack = G_weights["stack"]
print(
"Resuming at "
+ str(self.resl)
+ " definition after "
+ str(self.epoch)
+ " epochs"
)
self.G.module.load_state_dict(G_weights["state_dict"])
self.D.module.load_state_dict(D_weights["state_dict"])
self.opt_g.load_state_dict(G_weights["optimizer"])
self.opt_d.load_state_dict(D_weights["optimizer"])
# tensorboard
self.use_tb = config.use_tb
if self.use_tb:
self.tb = tensorboard.tf_recorder()
def resl_scheduler(self):
"""
this function will schedule image resolution(self.resl) progressively.
it should be called every iteration to ensure resl value is updated properly.
step 1. (trns_tick) --> transition in generator.
step 2. (stab_tick) --> stabilize.
step 3. (trns_tick) --> transition in discriminator.
step 4. (stab_tick) --> stabilize.
"""
self.previous_phase = self.phase
if self.phase[1:] != "trns":
self.accelerate = 1
if floor(self.resl) != 2:
self.trns_tick = self.config.trns_tick
self.stab_tick = self.config.stab_tick
self.batchsize = self.loader.batchsize
delta = 1.0 / (2 * self.trns_tick + 2 * self.stab_tick)
d_alpha = 1.0 * self.batchsize / self.trns_tick / self.TICK
# update alpha if fade-in layer exist.
if self.fadein["gen"] is not None:
if self.resl % 1.0 < (self.trns_tick) * delta:
self.fadein["gen"].update_alpha(d_alpha)
self.complete["gen"] = self.fadein["gen"].alpha * 100
self.phase = "gtrns"
elif (
self.resl % 1.0 >= (self.trns_tick) * delta
and self.resl % 1.0 < (self.trns_tick + self.stab_tick) * delta
):
self.phase = "gstab"
if self.fadein["dis"] is not None:
if (
self.resl % 1.0 >= (self.trns_tick + self.stab_tick) * delta
and self.resl % 1.0 < (self.stab_tick + self.trns_tick * 2) * delta
):
self.fadein["dis"].update_alpha(d_alpha)
self.complete["dis"] = self.fadein["dis"].alpha * 100
self.phase = "dtrns"
elif (
self.resl % 1.0 >= (self.stab_tick + self.trns_tick * 2) * delta
and self.phase != "final"
):
self.phase = "dstab"
prev_kimgs = self.kimgs
self.kimgs = self.kimgs + self.batchsize
if (self.kimgs % self.TICK) < (prev_kimgs % self.TICK):
self.globalTick = self.globalTick + 1
if self.resuming and self.globalTick > self.last_iteration:
self.resuming = False
# increase linearly every tick, and grow network structure.
prev_resl = floor(self.resl)
f = open("continue.txt", "r")
if safe_reading(f):
f.close()
if self.phase[1:] == "trns":
self.accelerate = accelerate(self.accelerate)
else:
self.skip = True
f = open("continue.txt", "w")
f.write("0")
self.resl = self.resl + delta
f.close()
self.resl = max(2, min(10.5, self.resl)) # clamping, range: 4 ~ 1024
# flush network.
if (
self.flag_flush_gen
and self.resl % 1.0 >= (self.trns_tick + self.stab_tick) * delta
and prev_resl != 2
):
if self.fadein["gen"] is not None:
self.fadein["gen"].update_alpha(d_alpha)
self.complete["gen"] = self.fadein["gen"].alpha * 100
self.flag_flush_gen = False
self.G.module.flush_network() # flush G
# print(self.G.module.model)
# self.Gs.module.flush_network() # flush Gs
self.fadein["gen"] = None
self.complete["gen"] = 0.0
self.phase = "dtrns"
print("flush gen, stop fadein gen, begin phase " + self.phase)
self.just_passed = True
elif (
self.flag_flush_dis and floor(self.resl) != prev_resl and prev_resl != 2
):
if self.fadein["dis"] is not None:
self.fadein["dis"].update_alpha(d_alpha)
self.complete["dis"] = self.fadein["dis"].alpha * 100
self.flag_flush_dis = False
self.D.module.flush_network() # flush and,
# print(self.D.module.model)
self.fadein["dis"] = None
self.complete["dis"] = 0.0
if floor(self.resl) < self.max_resl and self.phase != "final":
self.phase = "gtrns"
print("flush dis, stop fadein dis, begin phase " + self.phase)
self.just_passed = True
# grow network.
if floor(self.resl) != prev_resl and floor(self.resl) < self.max_resl + 1:
self.G.module.grow_network(floor(self.resl))
# self.Gs.grow_network(floor(self.resl))
self.D.module.grow_network(floor(self.resl))
self.renew_everything()
self.fadein["gen"] = dict(self.G.module.model.named_children())[
"fadein_block"
]
self.fadein["dis"] = dict(self.D.module.model.named_children())[
"fadein_block"
]
self.flag_flush_gen = True
self.flag_flush_dis = True
self.just_passed = True
print("grow network, begin fadein phases")
if (
floor(self.resl) >= self.max_resl
and self.resl % 1.0 >= (self.stab_tick + self.trns_tick * 2) * delta
):
self.phase = "final"
self.resl = (
self.max_resl + (self.stab_tick + self.trns_tick * 2) * delta
)
def renew_everything(self):
# renew dataloader.
self.loader = DL.dataloader(config)
self.loader.renew(min(floor(self.resl), self.max_resl))
# define tensors
self.z = torch.FloatTensor(self.loader.batchsize, self.nz)
self.x = torch.FloatTensor(
self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize
)
self.x_tilde = torch.FloatTensor(
self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize
)
self.real_label = torch.FloatTensor(self.loader.batchsize).fill_(1)
self.fake_label = torch.FloatTensor(self.loader.batchsize).fill_(0)
# enable cuda
if self.use_cuda:
self.z = self.z.cuda()
self.x = self.x.cuda()
self.x_tilde = self.x.cuda()
self.real_label = self.real_label.cuda()
self.fake_label = self.fake_label.cuda()
torch.cuda.manual_seed(config.random_seed)
# wrapping autograd Variable.
self.x = Variable(self.x, requires_grad=True)
self.x_tilde = Variable(self.x_tilde)
self.z = Variable(self.z)
self.real_label = Variable(self.real_label)
self.fake_label = Variable(self.fake_label)
# ship new model to cuda.
if self.use_cuda:
self.G = self.G.cuda()
self.D = self.D.cuda()
# optimizer
betas = (self.config.beta1, self.config.beta2)
if self.optimizer == "adam":
self.opt_g = Adam(
filter(lambda p: p.requires_grad, self.G.parameters()),
lr=self.lr,
betas=betas,
weight_decay=0.0,
)
self.opt_d = Adam(
filter(lambda p: p.requires_grad, self.D.parameters()),
lr=self.lr,
betas=betas,
weight_decay=0.0,
)
def feed_interpolated_input(self, x):
if (
self.phase == "gtrns"
and floor(self.resl) > 2
and floor(self.resl) <= self.max_resl
):
alpha = self.complete["gen"] / 100.0
transform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Scale(
size=int(pow(2, floor(self.resl) - 1)), interpolation=0
), # 0: nearest
transforms.Scale(
size=int(pow(2, floor(self.resl))), interpolation=0
), # 0: nearest
transforms.ToTensor(),
]
)
x_low = x.clone().add(1).mul(0.5)
for i in range(x_low.size(0)):
x_low[i] = transform(x_low[i]).mul(2).add(-1)
x = torch.add(x.mul(alpha), x_low.mul(1 - alpha)) # interpolated_x
if self.use_cuda:
return x.cuda()
else:
return x
def add_noise(self, x):
# TODO: support more method of adding noise.
if self.flag_add_noise == False:
return x
if hasattr(self, "_d_"):
self._d_ = self._d_ * 0.9 + torch.mean(self.fx_tilde).item() * 0.1
else:
self._d_ = 0.0
strength = 0.2 * max(0, self._d_ - 0.5) ** 2
z = np.random.randn(*x.size()).astype(np.float32) * strength
z = (
Variable(torch.from_numpy(z)).cuda()
if self.use_cuda
else Variable(torch.from_numpy(z))
)
return x + z
def _gradient_penalty(self, gradients):
# Gradients have shape (batch_size, num_channels, img_width, img_height),
# so flatten to easily take norm per example in batch
gradients = gradients.view(self.batchsize, -1)
# Derivatives of the gradient close to 0 can cause problems because of
# the square root, so manually calculate norm and add epsilon
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12)
# Return gradient penalty
return self.wgan_lambda * ((gradients_norm - 1) ** 2).mean()
def train(self):
# noise for test.
self.z_test = torch.FloatTensor(self.loader.batchsize, self.nz)
if self.use_cuda:
self.z_test = self.z_test.cuda()
self.z_test.data.resize_(self.loader.batchsize, self.nz).normal_(0.0, 1.0)
for step in range(2, self.max_resl + 1 + 5):
for iter in tqdm(
range(
0,
(self.trns_tick * 2 + self.stab_tick * 2) * self.TICK,
self.loader.batchsize,
)
):
if self.just_passed:
continue
self.globalIter = self.globalIter + 1
self.stack = self.stack + self.loader.batchsize
if self.stack > ceil(len(self.loader.dataset)):
self.epoch = self.epoch + 1
self.stack = int(self.stack % (ceil(len(self.loader.dataset))))
# reslolution scheduler.
self.resl_scheduler()
if self.skip and self.previous_phase == self.phase:
continue
self.skip = False
if self.globalIter % self.accelerate != 0:
continue
# zero gradients.
self.G.zero_grad()
self.D.zero_grad()
# update discriminator.
self.x.data = self.feed_interpolated_input(self.loader.get_batch())
if self.flag_add_noise:
self.x = self.add_noise(self.x)
self.z.data.resize_(self.loader.batchsize, self.nz).normal_(0.0, 1.0)
self.x_tilde = self.G(self.z)
self.fx = self.D(self.x)
self.fx_tilde = self.D(self.x_tilde.detach())
loss_d = self.mse(self.fx.squeeze(), self.real_label) + self.mse(
self.fx_tilde, self.fake_label
)
### gradient penalty
gradients = torch_grad(
outputs=self.fx,
inputs=self.x,
grad_outputs=torch.ones(self.fx.size()).cuda()
if self.use_cuda
else torch.ones(self.fx.size()),
create_graph=True,
retain_graph=True,
)[0]
gradient_penalty = self._gradient_penalty(gradients)
loss_d += gradient_penalty
### epsilon penalty
epsilon_penalty = (self.fx ** 2).mean()
loss_d += epsilon_penalty * self.wgan_epsilon
loss_d.backward()
self.opt_d.step()
# update generator.
fx_tilde = self.D(self.x_tilde)
loss_g = self.mse(fx_tilde.squeeze(), self.real_label.detach())
loss_g.backward()
self.opt_g.step()
# logging.
if (iter - 1) % 10:
log_msg = " [E:{0}][T:{1}][{2:6}/{3:6}] errD: {4:.4f} | errG: {5:.4f} | [lr:{11:.5f}][cur:{6:.3f}][resl:{7:4}][{8}][{9:.1f}%][{10:.1f}%]".format(
self.epoch,
self.globalTick,
self.stack,
len(self.loader.dataset),
loss_d.item(),
loss_g.item(),
self.resl,
int(pow(2, floor(self.resl))),
self.phase,
self.complete["gen"],
self.complete["dis"],
self.lr,
)
tqdm.write(log_msg)
# save model.
self.snapshot("repo/model")
# save image grid.
if self.globalIter % self.config.save_img_every == 0:
with torch.no_grad():
x_test = self.G(self.z_test)
utils.mkdir("repo/save/grid")
utils.mkdir("repo/save/grid_real")
utils.save_image_grid(
x_test.data,
"repo/save/grid/{}_{}_G{}_D{}.jpg".format(
int(self.globalIter / self.config.save_img_every),
self.phase,
self.complete["gen"],
self.complete["dis"],
),
)
if self.globalIter % self.config.save_img_every * 10 == 0:
utils.save_image_grid(
self.x.data,
"repo/save/grid_real/{}_{}_G{}_D{}.jpg".format(
int(self.globalIter / self.config.save_img_every),
self.phase,
self.complete["gen"],
self.complete["dis"],
),
)
utils.mkdir("repo/save/resl_{}".format(int(floor(self.resl))))
utils.mkdir("repo/save/resl_{}_real".format(int(floor(self.resl))))
utils.save_image_single(
x_test.data,
"repo/save/resl_{}/{}_{}_G{}_D{}.jpg".format(
int(floor(self.resl)),
int(self.globalIter / self.config.save_img_every),
self.phase,
self.complete["gen"],
self.complete["dis"],
),
)
if self.globalIter % self.config.save_img_every * 10 == 0:
utils.save_image_single(
self.x.data,
"repo/save/resl_{}_real/{}_{}_G{}_D{}.jpg".format(
int(floor(self.resl)),
int(self.globalIter / self.config.save_img_every),
self.phase,
self.complete["gen"],
self.complete["dis"],
),
)
# tensorboard visualization.
if self.use_tb:
with torch.no_grad():
x_test = self.G(self.z_test)
self.tb.add_scalar("data/loss_g", loss_g.item(), self.globalIter)
self.tb.add_scalar("data/loss_d", loss_d.item(), self.globalIter)
self.tb.add_scalar("tick/lr", self.lr, self.globalIter)
self.tb.add_scalar(
"tick/cur_resl", int(pow(2, floor(self.resl))), self.globalIter
)
"""IMAGE GRID
self.tb.add_image_grid('grid/x_test', 4, utils.adjust_dyn_range(x_test.data.float(), [-1,1], [0,1]), self.globalIter)
self.tb.add_image_grid('grid/x_tilde', 4, utils.adjust_dyn_range(self.x_tilde.data.float(), [-1,1], [0,1]), self.globalIter)
self.tb.add_image_grid('grid/x_intp', 4, utils.adjust_dyn_range(self.x.data.float(), [-1,1], [0,1]), self.globalIter)
"""
self.just_passed = False
def get_state(self, target):
if target == "gen":
state = {
"resl": self.resl,
"state_dict": self.G.module.state_dict(),
"optimizer": self.opt_g.state_dict(),
}
return state
elif target == "dis":
state = {
"resl": self.resl,
"state_dict": self.D.module.state_dict(),
"optimizer": self.opt_d.state_dict(),
}
return state
def get_state(self, target):
if target == "gen":
state = {
"resl": self.resl,
"state_dict": self.G.module.state_dict(),
"optimizer": self.opt_g.state_dict(),
"globalIter": self.globalIter,
"globalTick": self.globalTick,
"phase": self.phase,
"epoch": self.epoch,
"kimgs": self.kimgs,
"fadein": self.fadein,
"complete": self.complete,
"flag_flush_gen": self.flag_flush_gen,
"flag_flush_dis": self.flag_flush_dis,
}
return state
elif target == "dis":
state = {
"resl": self.resl,
"state_dict": self.D.module.state_dict(),
"optimizer": self.opt_d.state_dict(),
"globalIter": self.globalIter,
"globalTick": self.globalTick,
"phase": self.phase,
"epoch": self.epoch,
"kimgs": self.kimgs,
"fadein": self.fadein,
"complete": self.complete,
"flag_flush_gen": self.flag_flush_gen,
"flag_flush_dis": self.flag_flush_dis,
}
return state
def snapshot(self, path):
if not os.path.exists(path):
if os.name == "nt":
os.system("mkdir {}".format(path.replace("/", "\\")))
else:
os.system("mkdir -p {}".format(path))
# save every 100 tick if the network is in stab phase.
ndis = "dis_R{}_T{}.pth.tar".format(int(floor(self.resl)), self.globalTick)
ngen = "gen_R{}_T{}.pth.tar".format(int(floor(self.resl)), self.globalTick)
if self.globalTick % 50 == 0:
if self.phase == "gstab" or self.phase == "dstab" or self.phase == "final":
save_path = os.path.join(path, ndis)
if not os.path.exists(save_path):
torch.save(self.get_state("dis"), save_path)
save_path = os.path.join(path, ngen)
torch.save(self.get_state("gen"), save_path)
print("[snapshot] model saved @ {}".format(path))
if __name__ == "__main__":
## perform training.
print("----------------- configuration -----------------")
for k, v in vars(config).items():
print(" {}: {}".format(k, v))
print("-------------------------------------------------")
torch.backends.cudnn.benchmark = True # boost speed.
trainer = trainer(config)
trainer.train()