-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIsing2d.py
130 lines (103 loc) · 3.68 KB
/
Ising2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import matplotlib.pyplot as plt
import random
import queue
import numpy as np
import matplotlib.pyplot as plt
import random
import queue
class Lattice:
def __init__(self, lsize, K=1.0):
self.lattice = np.random.rand(lsize, lsize)
self.lattice = np.round(self.lattice)
self.lattice[self.lattice == 0] = 1
self.idx = 1
self.idy = 1
self.K = K # Dimensionless Temperature
self.lsize = lsize # Lattice Size
self.prob = 1 - np.exp(-1 * self.K) # Acceptance probability for Wolff
self.w = {key:np.exp(0) for key in [-8, -4, 0, 4, 8]}
# This ensures that all flips towards negative
# energy configuration have flip probability = 1.
self.w[-8] = np.exp(-K * 8.0) # Adjust
self.w[-4] = np.exp(-K*4.0)
self.M = 0
self.M2 = 0
self.absM = 0
self.E = 0
self.E2 = 0
def reset(self):
self.M = 0
self.M2 = 0
self.absM = 0
self.E = 0
self.E2 = 0
def get_index(self, idx, idy):
idx = (idx + self.lsize) % self.lsize
idy = (idy + self.lsize) % self.lsize
return idx, idy
def at(self, idx, idy):
return self.lattice[self.get_index(idx, idy)]
def get_neighbor_indices(self, site):
return [self.get_index(site[0], site[1]+1), self.get_index(site[0], site[1]-1),
self.get_index(site[0]+1, site[1]), self.get_index(site[0]-1, site[1])]
def metropolis(self):
'''
Implements single metropolis pass.
'''
site_id = np.random.randint(0, self.lsize), np.random.randint(0, self.lsize)
deltaE = 0
for n in self.get_neighbor_indices(site_id):
deltaE += self.at(site_id[0], site_id[1]) * self.at(n[0], n[1])
deltaE = int(-2 * deltaE)
if random.random() < self.w[deltaE]:
self.lattice[site_id[0], site_id[1]] *= -1
def metropolis_pass(self):
'''
Implements metropolis pass.
'''
mcs = self.lsize ** 2 * 100
avg_M = []
avg_M2 = []
m = 0
m2 = 0
for i in range(mcs):
self.metropolis()
avg_M.append(self.M)
avg_M2.append(self.M2)
m = np.mean(avg_M)
m2 = np.mean(avg_M2) - (np.mean(avg_M))**2.0
print("M = {0}".format(m))
print("Sigma(M) = {0}".format(m2))
return m, m2
def find_clusters(self):
cluster = set([])
unprocessed_sites = queue.Queue()
site_id = np.random.randint(0, self.lsize), np.random.randint(0, self.lsize)
unprocessed_sites.put(site_id)
while not unprocessed_sites.empty():
site_id = unprocessed_sites.get()
neighbors = self.get_neighbor_indices(site_id)
for n in neighbors:
site_n = self.at(n[0], n[1])
site_center = self.at(site_id[0], site_id[1])
prob = 1 - np.exp(-self.K * site_n * site_center)
if random.random() < prob:
if not n in cluster:
unprocessed_sites.put(n)
cluster.add(n)
return cluster
def wolff_pass(self):
mcs = self.lsize ** 2
for i in range(mcs):
clusters = self.find_clusters()
for c in clusters:
self.lattice[c[0], c[1]] *= -1
print("M = ", self.M)
print("Sigma(M) = ", self.M2 - (self.M) ** 2.0)
@property
def M(self):
return np.sum(self.lattice) / (self.lsize * self.lsize)
@property
def M2(self):
return np.sum(np.power(self.lattice, 2)) / (self.lsize * self.lsize)