-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
299 lines (242 loc) · 11.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import importlib
import os
import warnings
warnings.filterwarnings('ignore')
import argparse
import random
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from utils import dotdict
from utils import calculate_mof
from testtime_postprocess import PostProcess
import torch.nn.functional as F
from testtime_dataset import AugmentDataset, collate_fn_override
my_parser = argparse.ArgumentParser()
my_parser.add_argument('--dataset_name', type=str, default="breakfast", choices=['breakfast', '50salads', 'gtea'])
my_parser.add_argument('--split', type=int, required=False, help="Comma seperated split number to run evaluation," + \
"default = 1,2,3,4 for breakfast and gtea, 1,2,3,4,5 for 50salads")
my_parser.add_argument('--cudad', type=str, default='0', help="Cuda device number to run evaluation program in")
my_parser.add_argument('--base_dir', type=str, help="Base directory containing groundTruth, features, splits directory of dataset")
my_parser.add_argument('--chunk_size', type=int, required=False, help="Provide chunk size which as used for training," + \
"by default it is set for datase")
my_parser.add_argument('--ensem_weights', type=str, required=False,
help='Default = \"1,1,1,1,0,0\", provide in similar format comma-seperated 6 weights values if required to be changed')
my_parser.add_argument('--ft_file', type=str, required=False, help="Provide feature file dir path if default is not base_dir/features")
my_parser.add_argument('--ft_size', type=int, required=False, help="Default = 2048 for the I3D features, change if feature size changes")
my_parser.add_argument('--model_path', type=str, default='model')
my_parser.add_argument('--err_bar', type=int, required=False)
my_parser.add_argument('--compile_result', action='store_true', help="To get results without test time augmentation use --compile_result")
my_parser.add_argument('--num_workers', type=int, default=7, help="Number of workers to be used for data loading")
my_parser.add_argument('--out_dir', required=False, help="Directory where output(checkpoints, logs, results) is to be dumped")
my_parser.add_argument('--model_checkpoint', required=False, help="Checkpoint to pick up the model")
args = my_parser.parse_args()
seed = 42
if args.err_bar:
seed = args.err_bar #np.random.randint(0, 999999)
if args.model_checkpoint:
split_dir = args.model_checkpoint.split("/")
args.out_dir = "/".join(split_dir[:-2])
print(f"With model checkpoint {args.model_checkpoint}, output directory is {args.out_dir}")
# Ensure deterministic behavior
def set_seed():
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
set_seed()
# Device configuration
os.environ['CUDA_VISIBLE_DEVICES']=args.cudad
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
config = dotdict(
epochs=500,
dataset=args.dataset_name,
feature_size=2048,
gamma=0.5,
step_size=500,
model_path=args.model_path,
base_dir =args.base_dir,
aug=1,
lps=0)
config.ensem_weights = [1, 1, 1, 1, 0, 0]
if args.dataset_name == "breakfast":
config.chunk_size = 10
config.max_frames_per_video = 1200
config.learning_rate = 1e-4
config.weight_decay = 3e-3
config.batch_size = 100
config.num_class = 48
config.back_gd = ['SIL']
config.split = [1, 2, 3, 4]
if not args.compile_result:
config.chunk_size = list(range(7, 16))
config.weights = np.ones(len(config.chunk_size))
else:
config.chunk_size = [10]
config.weights = [1]
config.eval_true = True
elif args.dataset_name == "gtea":
config.chunk_size = 4
config.max_frames_per_video = 600
config.learning_rate = 5e-4
config.weight_decay = 3e-4
config.batch_size = 11
config.num_class = 11
config.back_gd = ['background']
config.split = [1, 2, 3, 4]
if not args.compile_result:
config.chunk_size = [3, 4, 5] # list(range(20,40))
config.weights = [1, 3, 1]
else:
config.chunk_size = [4]
config.weights = [1]
else: # if args.dataset_name == "50salads":
config.chunk_size = 20
config.max_frames_per_video = 960
config.learning_rate = 3e-4
config.weight_decay = 1e-3
config.batch_size = 20
config.num_class = 19
config.back_gd = ['action_start', 'action_end']
config.split = [1, 2, 3, 4, 5]
if not args.compile_result:
config.chunk_size = list(range(20,40))
config.weights = np.ones(len(config.chunk_size))
else:
config.chunk_size = [20]
config.weights = [1]
config.eval_true = True
if args.split is not None:
try:
args.split = int(args.split)
config.split = [args.split]
except:
config.split = args.split.split(',')
config.features_file_name = config.base_dir + "/features/"
config.ground_truth_files_dir = config.base_dir + "/groundTruth/"
config.label_id_csv = config.base_dir + "mapping.csv"
def model_pipeline(config):
acc_list = []
edit_list = []
f1_10_list = []
f1_25_list = []
f1_50_list = []
for ele in config.split:
config.output_dir = config.base_dir + "results/supervised_C2FTCN/split{}".format(ele) #, onfig.model_path, ele, config.aug)
# if args.wd is not None:
# config.weight_decay = args.wd
# config.output_dir=config.output_dir + "_wd{:.5f}".format(config.weight_decay)
# if args.lr is not None:
# config.learning_rate = args.lr
# config.output_dir=config.output_dir + "_lr{:.6f}".format(config.learning_rate)
if args.chunk_size is not None:
config.chunk_size = args.chunk_size
config.output_dir = config.output_dir + "_chunk{}".format(config.chunk_size)
if args.ensem_weights is not None:
config.output_dir = config.output_dir + "_wts{}".format(args.ensem_weights.replace(',', '-'))
config.ensem_weights = list(map(int, args.ensem_weights.split(",")))
print("Weights being used is ", config.ensem_weights)
config.output_dir = config.output_dir + "/"
if args.out_dir is not None:
config.output_dir = args.out_dir + "/"
print("printing getting the output from output dir = ", config.output_dir)
config.project_name="{}-split{}".format(config.dataset, ele)
config.test_split_file = config.base_dir + "splits/test.split{}.bundle".format(ele)
# make the model, data, and optimization problem
model, test_loader, postprocessor = make(config)
model.load_state_dict(load_best_model(config))
prefix = ''
# model.eval()
correct, correct1, total = 0, 0, 0
postprocessor.start()
with torch.no_grad():
for i, item in enumerate(test_loader):
samples = item[0].to(device).permute(0,2,1)
count = item[1].to(device)
labels = item[2].to(device)
src_mask = torch.arange(labels.shape[1], device=labels.device)[None, :] < count[:, None]
src_mask = src_mask.to(device)
outplist = model(samples)
ensembel_out = get_ensemble_out(outplist)
pred = torch.argmax(ensembel_out, dim=1)
correct += float(torch.sum((pred==labels)*src_mask).item())
total += float(torch.sum(src_mask).item())
# postprocessor(ensembel_out, item[5], labels, count)
# 7 chunk size, 8 is chunk id
postprocessor(ensembel_out, item[5], labels, count, item[7].to(device), item[8], item[3].to(device))
print(f'Accuracy: {100.0*correct/total: .2f}')
# Add postprocessing and check the outcomes
path = os.path.join(config.output_dir, prefix + "testtime_augmentation_split{}".format(ele))
if not os.path.exists(path):
os.mkdir(path)
print(f"Output files will be dumped in {path} directory")
postprocessor.dump_to_directory(path)
final_edit_score, map_v, overlap_scores = calculate_mof(config.ground_truth_files_dir, path, config.back_gd)
acc_list.append(map_v)
edit_list.append(final_edit_score)
f1_10_list.append(overlap_scores[0])
f1_25_list.append(overlap_scores[1])
f1_50_list.append(overlap_scores[2])
print("Frame accuracy = ", np.mean(np.array(acc_list)))
print("Edit Scores = ", np.mean(np.array(edit_list)))
print("f1@10 Scores = ", np.mean(np.array(f1_10_list)))
print("f1@25 Scores = ", np.mean(np.array(f1_25_list)))
print("f1@50 Scores = ", np.mean(np.array(f1_50_list)))
def load_best_model(config):
if args.model_checkpoint is not None:
print(f"Loading checkpoint from {args.model_checkpoint}")
return torch.load(args.model_checkpoint)
checkpoint_file = config.output_dir + '/best_' + config.dataset + '_unet.wt'
print(f"Loading checkpoint from {checkpoint_file}")
return torch.load(checkpoint_file)
def load_avgbest_model(config):
if args.model_checkpoint is not None:
return torch.load(args.model_checkpoint)
return torch.load(config.output_dir + '/avgbest_' + config.dataset + '_unet.wt')
def make(config):
# Make the data
test = get_data(config, train=False)
test_loader = make_loader(test, batch_size=config.batch_size, train=False)
# Make the model
model = get_model(config).to(device)
num_params = sum([p.numel() for p in model.parameters()])
print("Number of parameters = ", num_params/1e6, " million")
# postprocessor declaration
postprocessor = PostProcess(config, config.weights)
postprocessor = postprocessor.to(device)
return model, test_loader, postprocessor
def get_data(args, train=True):
if train is True:
fold='train'
split_file_name = args.train_split_file
else:
fold='val'
split_file_name = args.test_split_file
dataset = AugmentDataset(args, fold=fold, fold_file_name=split_file_name, chunk_size=config.chunk_size)
return dataset
def make_loader(dataset, batch_size, train=True):
def _init_fn(worker_id):
np.random.seed(int(seed))
loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=train,
pin_memory=True, num_workers=args.num_workers, collate_fn=collate_fn_override,
worker_init_fn=_init_fn)
return loader
def get_model(config):
my_module = importlib.import_module(config.model_path)
set_seed()
return my_module.C2F_TCN(config.feature_size, config.num_class)
def get_ensemble_out(outp):
weights = config.ensem_weights
ensemble_prob = F.softmax(outp[0], dim=1) * weights[0] / sum(weights)
for i, outp_ele in enumerate(outp[1]):
upped_logit = F.upsample(outp_ele, size=outp[0].shape[-1], mode='linear', align_corners=True)
ensemble_prob = ensemble_prob + F.softmax(upped_logit, dim=1) * weights[i + 1] / sum(weights)
return ensemble_prob
model = model_pipeline(config)