-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjacobians.m
99 lines (84 loc) · 1.71 KB
/
jacobians.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function [J1,J2,d2H] = jacobians(t,y,params,str)
%Jacobian in region S1 (H(x) > 0)
J1 = [-1 1;0 3];
%Jacobian in region S2 (H(x) < 0)
J2 = J1;
% grad(grad(H)) A vector normal to the discontinuity surface
d2H = zeros(size(J1));
% % %%% nonsmooth system
%
% % Parameters multiple crossing
%
% % %
% %Jacobian in region S1 (H(x) > 0)
%
% J1 = [3, 1;
% 3, 1/2];
%
% %Jacobian in region S2 (H(x) < 0)
%
% J2 = [-1, 1;
% -1, 1/2];
%
% % grad(grad(H)) A vector normal to the discontinuity surface
%
% d2H = zeros(size(J1));
% %%% Dry friction oscillator Merillas-Galvaneto
%
% % parameters
%
% alpha = 0.3;
% g = 10;
% gamma = 1.42;
% Vdr = 1;
% eta = 0.01;
%
% %Jacobian in region S1 (H(x) > 0)
%
% J1 = [0,1;
% -1,g*gamma*alpha/(1+gamma*(y(2)-Vdr))^2 - 2*g*eta*(y(2)-Vdr)];
%
% %Jacobian in region S2 (H(x) < 0)
%
% J2 = [0,1;
% -1,g*gamma*alpha/(1-gamma*(y(2)-Vdr))^2 + 2*g*eta*(y(2)-Vdr)];
%
% % grad(grad(H)) A vector normal to the discontinuity surface
%
% d2H = zeros(size(J1));
% %%% Unforced mechanical discontinuous system
%
% % parameters
% c = -0.5;
%
% %Jacobian in region S1 (H(x) > 0)
%
% J1 = [0,1;
% -1,-c];
%
% %Jacobian in region S2 (H(x) < 0)
%
% J2 = [0,1;
% -1,-c];
%
% % grad(grad(H)) A vector normal to the discontinuity surface
%
% d2H = zeros(size(J1));
% %%% Unforced Disc. Mech. Syst nonlinear spring
%
% % parameters
% a21 = 0.1;
% a22 = -1;
%
% %Jacobian in region S1 (H(x) > 0)
%
% J1 = [0,1;
% a21-3*y(1)^2,a22];
%
% %Jacobian in region S2 (H(x) < 0)
%
% J2 = J1;
%
% % grad(grad(H)) A vector normal to the discontinuity surface
%
% d2H = zeros(size(J1));