-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathICANMTC.mod
executable file
·166 lines (140 loc) · 5.03 KB
/
ICANMTC.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
TITLE Slow Ca2+-dependent non-specific cation current
COMMENT
Model based on a first order kinetic scheme:
<closed> + n cai <-> <open> (alpha,beta)
Following this model, the activation fct will be half-activated at a
concentration of cai = (beta/alpha)^(1/n) = cac (parameter). The mod
file is here written for the case n = 2 (2 binding sites). With a few
changes this is based on ref [1].
The model also has Vm-dependence based on refs [2-3].
The current also has an inactivation variable. It allows the
implementation of the intrinsic slow (<1 Hz) oscillation in thalamic
cells based on I_Twindow and I_CAN. Absence of this property dampens
the oscillation because the current is too strong at the onset of the
down-state.
This current has the following properties:
- inward current (non specific for cations Na+, K+, Ca2+, ...)
- activated by intracellular calcium
- inactivated by intracellular calcium
- voltage dependent
- minimal value for the time constant of Ca2+-dependence
- fast voltage-dependent activation kinetics
References:
[1] Destexhe, A., Contreras, A., Sejnowski, T.J., Steriade, M. A model
of spindle rhythmicity in the isolated thalamic reticular nucleus.
The journal of neurophysiology, 72: 803-818, 1994.
[2] Kolaj, M., Zhang, L., Renaud, L.P. Novel coupling between TRPC-like
and KNa channels modulates low threshold spike-induced
afterpotentials in rat thalamic midline neurons. Neuropharmacology,
86: 88-96, 2014.
[3] Zhang, L., Kolaj, M., Renaud, L.P. Endocannabinoid 2-AG and
intracellular cannabinoid receptors modulate a low-threshold
calcium spike-induced slow depolarizing afterpotential in rat
thalamic paraventricular nucleus neurons. 322: 308-319, 2016.
Written by Martynas Dervinis @Cardiff University, 2017.
ENDCOMMENT
NEURON {
SUFFIX icanmTC
USEION n READ en WRITE in VALENCE 1
USEION ca READ cai
RANGE gbar, mCa_inf, tau_mCa, beta, cac, taumin, inact, tau_hCa, n
RANGE mVm_inf, tau_mVm
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
(mS) = (millisecond)
}
PARAMETER {
v (mV)
celsius = 37 (degC)
en = 10 (mV) : reversal potential
cai = 50e-6 (mM) : initial [Ca]i
gbar = 0.00025 (mho/cm2)
n = 2 : number of Ca2+ binding sites per gating variable
beta = 0.0001 (1/ms) : backward rate constant
cac = 0.00025 (mM) : middle point of activation fct
taumin = 0.1 (ms) : minimal value of time constant
inact = 1
tau_hCa_min = 0.1 (ms) : minimal value of the Ca2+-dependent inactivation time constant
: Slow rise and medium decay times: n = 2, beta = 0.0001, cac = 0.00025
: Medium rise and slow decay times: n = 4, beta = 0.0001, cac = 0.00025
: Medium rise and medium decay times: n = 4, beta = 0.0002, cac = 0.00025 (n = 2, beta = 0.0005, cac = 0.00025)
: Fast rise and fast decay times: n = 4, beta = 0.0005, cac = 0.00025
}
STATE {
mCa
hCa
:mVm
}
ASSIGNED {
in (mA/cm2)
mCa_inf
tau_mCa (ms)
hCa_inf
mVm_inf
tau_mVm
tau_hCa (ms) : Ca2+-dependent inactivation time constant
q10
}
BREAKPOINT {
SOLVE states METHOD cnexp
:in = gbar * mCa^2*mVm * (v - en)
in = gbar * mCa^2 * hCa * (v - en)
}
DERIVATIVE states {
evaluate_fct(cai)
mCa' = (mCa_inf - mCa) / tau_mCa
inactivation(cai)
hCa' = (hCa_inf - hCa) / tau_hCa
:gates(v)
:mVm' = (mVm_inf - mVm) / tau_mVm
}
INITIAL {
q10 = 3.0 ^ ((celsius-22.0)/10)
evaluate_fct(cai)
mCa = mCa_inf
inactivation(cai)
hCa = hCa_inf
:gates(v)
:mVm = mVm_inf
}
UNITSOFF
PROCEDURE evaluate_fct(cai(mM)) { LOCAL alpha, alpha_tau
alpha = beta * (cai/cac)^n : sensitivity
alpha_tau = beta * (cac/cai)^n
tau_mCa = 250 :10 :1 / (alpha_tau + beta) / q10 : time constant
mCa_inf = alpha / (alpha + beta)
if(tau_mCa < taumin) { tau_mCa = taumin } : min value of time cst
}
PROCEDURE gates(v(mV)) { : computes gating functions and other constants at current v
LOCAL q10Vm, alphaV, betaV
TABLE mVm_inf, tau_mVm DEPEND celsius FROM -120 TO 80 WITH 200
q10Vm = 3.0 ^ ((celsius-22.0)/10)
alphaV = 0.32 * vtrap(-66.58 - 3.5 - v, 4) : activation system
betaV = 0.28 * vtrap(39.58 + v + 3.5, 5)
tau_mVm = (1 / (alphaV + betaV)) / q10Vm
mVm_inf = 1 / (1 + exp(-(v + 53.87 + 3.5) / 3))
: mVm_inf = 1 / (1 + exp(-(v + 53.87 + 3.5) / 1.5))
}
FUNCTION vtrap(x,y) { : traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y) - 1)
}
}
PROCEDURE inactivation(cai(mM)) {LOCAL cac_h
cac_h = 0.00036
if (inact) {
:hCa_inf = 1/(1 + (cai/0.0002)^5)
hCa_inf = 1/(1 + (cai/cac_h)^20)
} else {
hCa_inf = 1
}
:tau_hCa = 1000
tau_hCa = ((1 / 0.00019) / ((cac_h / cai)^20 + 1) / q10) + tau_hCa_min
}
UNITSON