-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
154 lines (137 loc) · 6.08 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import numpy as np
import gym
from collections import deque
from torch.distributions import Categorical
from torch.utils.tensorboard import SummaryWriter
from net import policy_net, value_net
from buffer import trajectory_buffer
class ppo_clip(object):
def __init__(self, env_id, epoch, learning_rate, gamma, lam, epsilon, capacity, update_iter, model_id=None, update_freq=50):
super(ppo_clip, self).__init__()
self.model_id = model_id
self.env_id = env_id
self.env = gym.make(self.env_id)
self.learning_rate = learning_rate
self.gamma = gamma
self.lam = lam
self.epsilon = epsilon
self.epoch = epoch
self.capacity = capacity
self.update_iter = update_iter
self.update_freq = update_freq
self.observation_dim = self.env.observation_space.shape[0]
self.action_dim = self.env.action_space.n
self.policy_net = policy_net(self.observation_dim, self.action_dim)
self.value_net = value_net(self.observation_dim, 1)
self.value_optimizer = torch.optim.Adam(self.value_net.parameters(), lr=self.learning_rate)
self.policy_optimizer = torch.optim.Adam(self.policy_net.parameters(), lr=self.learning_rate)
self.buffer = trajectory_buffer(capacity=self.capacity)
self.count = 0
self.train_count = 0
def reset(self):
self.count = 0
self.train_count = 0
self.buffer.clear()
def train(self):
obs, next_obs, act, rew, don, val = self.buffer.get()
obs = torch.FloatTensor(obs)
next_obs = torch.FloatTensor(next_obs)
act = torch.LongTensor(act)
rew = torch.FloatTensor(rew)
don = torch.FloatTensor(don)
val = torch.FloatTensor(val)
old_probs = self.policy_net.forward(obs)
old_probs = old_probs.gather(1, act).squeeze(1).detach()
value_loss_buffer = []
policy_loss_buffer = []
for _ in range(self.update_iter):
td_target = rew + self.gamma * self.value_net.forward(next_obs) * (1 - don)
delta = td_target - self.value_net.forward(obs)
delta = delta.detach().numpy()
advantage_lst = []
advantage = 0.0
for delta_t in delta[::-1]:
advantage = self.gamma * self.lam * advantage + delta_t[0]
advantage_lst.append([advantage])
advantage_lst.reverse()
advantage = torch.FloatTensor(advantage_lst)
value = self.value_net.forward(obs)
#value_loss = (ret - value).pow(2).mean()
value_loss = F.smooth_l1_loss(td_target.detach(), value)
value_loss_buffer.append(value_loss.item())
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
probs = self.policy_net.forward(obs)
probs = probs.gather(1, act).squeeze(1)
ratio = probs / old_probs
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1. - self.epsilon, 1. + self.epsilon) * advantage
policy_loss = - torch.min(surr1, surr2).mean()
policy_loss_buffer.append(policy_loss.item())
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
def load_weight_hyperparam(self, model_path):
model_ = torch.load(model_path)
self.policy_net.load_state_dict(model_['policy_weight'])
self.value_net.load_state_dict(model_['value_weight'])
hyperparameters = model_['hyperparameters']
self.learning_rate = hyperparameters['learning_rate']
self.gamma = hyperparameters['gamma']
self.lam = hyperparameters['lam']
self.epsilon = hyperparameters['epsilon']
def save_weight_hyperparam(self, model_path):
model_ = {}
model_['policy_weight'] = self.policy_net.state_dict()
model_['value_weight'] = self.value_net.state_dict()
hyperparameters = {}
hyperparameters['learning_rate'] = self.learning_rate
hyperparameters['gamma'] = self.gamma
hyperparameters['lam'] = self.lam
hyperparameters['epsilon'] = self.epsilon
model_['hyperparameters'] = hyperparameters
torch.save(model_, model_path)
def run(self):
while True:
if self.train_count == self.epoch:
break
obs = self.env.reset()
total_reward = 0
while True:
action = self.policy_net.act(torch.FloatTensor(np.expand_dims(obs, 0)))
next_obs, reward, done, _ = self.env.step(action)
value = self.value_net.forward(torch.FloatTensor(np.expand_dims(obs, 0))).detach().item()
self.buffer.store(obs, next_obs, action, reward, done, value)
self.count += 1
total_reward += reward
obs = next_obs
if self.count % self.update_freq == 0:
self.train_count += 1
self.train()
self.buffer.clear()
if self.train_count == self.epoch:
break
if done:
break
def eval(self, num=5):
score_list = []
for _ in range(num):
obs = self.env.reset()
total_reward = 0
while True:
action = self.policy_net.act(torch.FloatTensor(np.expand_dims(obs, 0)))
next_obs, reward, done, _ = self.env.step(action)
value = self.value_net.forward(torch.FloatTensor(np.expand_dims(obs, 0))).detach().item()
total_reward += reward
obs = next_obs
if done:
break
score_list.append(total_reward)
return np.mean(score_list)
if __name__ == '__main__':
env = gym.make('CartPole-v1').unwrapped