-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
117 lines (94 loc) · 3.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# from vgg16_full import *
from resnet50_skeleton import *
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
# Image Preprocessing
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# CIFAR-10 Dataset
train_dataset = torchvision.datasets.CIFAR10(root='../osproj/data/',
train=True,
transform=transform_train,
download=False) # Change Download-flag "True" at the first excution.
test_dataset = torchvision.datasets.CIFAR10(root='../osproj/data/',
train=False,
transform=transform_test)
# data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
shuffle=False)
###########################################################
# Choose model
model = ResNet50_layer4().to(device)
PATH = './resnet50_epoch285.ckpt' # test acc would be almost 80
# model = vgg16().to(device)
# PATH = './vgg16_epoch250.ckpt' # test acc would be almost 85
##############################################################
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint)
# Train Model
# Hyper-parameters
num_epochs = 1 # students should train 1 epoch because they will use cpu
learning_rate = 0.001
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# For updating learning rate
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Train the model
total_step = len(train_loader)
current_lr = learning_rate
for epoch in range(num_epochs):
model.train()
train_loss = 0
for batch_index, (images, labels) in enumerate(train_loader):
# print(images.shape)
images = images.to(device) # "images" = "inputs"
labels = labels.to(device) # "labels" = "targets"
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
if (batch_index + 1) % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
.format(epoch + 1, num_epochs, batch_index + 1, total_step, train_loss / (batch_index + 1)))
# Decay learning rate
if (epoch + 1) % 20 == 0:
current_lr /= 3
update_lr(optimizer, current_lr)
torch.save(model.state_dict(), './resnet50_epoch' + str(epoch+1)+'.ckpt')
# Save the model checkpoint
torch.save(model.state_dict(), './resnet50_final.ckpt')
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))