-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
239 lines (175 loc) · 8.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from dataloader.dataloader import *
from params import argument_parser, MODEL_CFGS, CLASSIFIER_CFGS
from models.models import *
import torch.nn as nn #
import torch.optim as optim # various optimization functions for model
from dataloader.transforms import *
from utils.loss_functions import apply_margin
import math
from torch.autograd import Variable
from torch.utils import data
from torch.optim.lr_scheduler import StepLR
import pdb
import warnings
warnings.filterwarnings("ignore")
class Trainer():
def __init__(self, args, train_dataloader, test_dataloader, val_dataloader, model, criterion, optimizer):
self.device = args.device
print("Training with device: ", self.device)
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
self.val_dataloader = val_dataloader
self.model = model.to(self.device)
self.optimizer = optimizer
self.criterion = criterion
self.args = args
self.best_loss = 0.0
self.best_model = None
self.stagger_count = 0
def train(self):
# Train
for e in range(args.epochs):
print("=== Epoch: ", e + 1, "/ ", args.epochs, " ===")
self.model.train()
loss_tracker = 0.0
for i, datum in enumerate(self.train_dataloader, 0):
inputs, labels = datum
inputs = inputs.to(self.device)
labels = labels.to(self.device)
self.optimizer.zero_grad()
outputs, equi_feat, inv_feat = self.model(inputs)
if args.use_cosface:
outputs = apply_margin(outputs, labels, args.m)
loss = self.criterion(outputs, labels)
loss.backward()
for name, param in self.model.named_parameters():
if 'aggregate' in name:
b, c, w, h = param.shape
for x in range(w):
for y in range(h):
if x != int((w-1)/2) or y != int((h-1)/2):
param.grad[:, :, x, y] = 0
self.optimizer.step()
loss_tracker += loss.item()
if (i + 1) % args.batch_iter == 0:
# The loss calcluated here is sum of loss PER mini-batch (128)
print('[%d, %5d/%d] loss: %.3f' % (
e + 1, i + 1, int(len(self.train_dataloader.dataset) / args.train_batch),
loss_tracker / args.batch_iter))
loss_tracker = 0.0
# Validation
self.model.eval()
per_instance_loss_tracker = 0.0
for inputs, labels in self.val_dataloader:
inputs = inputs.to(self.device)
labels = labels.to(self.device)
outputs, equi_feat, inv_feat = self.model(inputs)
loss = self.criterion(outputs, labels)
per_instance_loss_tracker += loss.item()
per_instance_loss_tracker /= (len(self.val_dataloader))
print("This iteration's per-train-minibatch loss on validation: ",
per_instance_loss_tracker)
if e == 0:
self.best_loss = per_instance_loss_tracker
torch.save(self.model.state_dict(), args.save_bestmodel_name)
elif e > 0:
if per_instance_loss_tracker < self.best_loss:
print("Val. loss improved: ", self.best_loss * args.train_batch, '-> ',
per_instance_loss_tracker * args.train_batch)
torch.save(self.model.state_dict(), args.save_bestmodel_name)
print("=== Model SAVED in ", args.save_bestmodel_name)
self.best_loss = per_instance_loss_tracker
self.stagger_count = 0
print("New validation achieved!")
else:
self.stagger_count += 1
print("Not satisfied validation improvement. STAGGER COUNT: ", self.stagger_count)
else:
return
def test(self, model_path=None):
# model.eval() not implemented. See Section A. in supplementary material for detail.
test_loss = 0
correct = 0
if args.single_rotation_angle is not None and not args.single_rotation_angle == 0:
print("Testing over ", args.single_rotation_angle, " degree rotation augmented dataset")
for i, (inputs, labels) in enumerate(self.test_dataloader, 0):
inputs = inputs.to(self.device)
labels = labels.to(self.device)
output, equi_feat, inv_feat = self.model(inputs)
pred = output.max(1, keepdim=True)[1] # get the index of the max
# Consider 6 and 9 as the same class
if self.args.test_dataset == 'MNIST' or self.args.test_dataset == 'RotNIST':
pred[pred==6] = 10
pred[pred==9] = 10
labels[labels==6] = 10
labels[labels==9] = 10
correct += pred.eq(labels.view_as(pred)).sum().item()
test_loss /= len(self.test_dataloader.dataset)
print('\nTest set: Accuracy: {}/{} ({:.0f}%)\n'.
format(correct, len(self.test_dataloader.dataset),
100. * correct / len(self.test_dataloader.dataset)))
return correct
if __name__ == '__main__':
args = argument_parser()
torch.manual_seed(args.seed)
##############################
######## LOAD MODEL ########
##############################
reverse = False
if args.test_dataset == 'RotCIFAR10' or args.test_dataset == 'CIFAR10':
reverse = True
model = SWN_GCN(args, MODEL_CFGS['F'], CLASSIFIER_CFGS['B'], cosface=args.use_cosface, reverse=reverse)
if args.resume_training and not args.test_only:
print("Resuming Training!")
print("Loading: ", args.resume_training)
model.load_state_dict(torch.load(args.save_bestmodel_name))
elif args.test_only:
print("Testing only!")
print("Loading for test: ", args.test_model_name)
model.load_state_dict(torch.load(args.test_model_name))
if args.train_dataset == 'MNIST':
train_dataloader = MNISTDataloader(args, 'train', T_MNIST)
val_dataloader = MNISTDataloader(args, 'val', T_MNIST)
elif args.train_dataset == 'RotNIST':
train_dataloader = MNISTDataloader(args, 'train', T_MNIST_ROT)
val_dataloader = MNISTDataloader(args, 'val', T_MNIST_ROT)
elif args.train_dataset == 'CIFAR10':
train_dataloader = CIFAR10Dataloader(args, 'train', T_CIFAR10)
val_dataloader = CIFAR10Dataloader(args, 'val', T_CIFAR10)
if args.test_dataset == 'MNIST':
test_dataloader = MNISTDataloader(args, 'test', T_MNIST)
elif args.test_dataset == 'RotNIST':
test_dataloader = MNISTDataloader(args, 'test', T_MNIST_ROT)
elif args.test_dataset == 'CIFAR10':
test_dataloader = CIFAR10Dataloader(args, 'test', T_CIFAR10)
elif args.test_dataset == 'RotCIFAR10':
test_dataloader = CIFAR10Dataloader(args, 'test', T_CIFAR10_ROT)
####################################
#### Loss Function & Optimizers ####
####################################
#
criterion = nn.CrossEntropyLoss()
#### Optimizer
if args.optimizer == 'adam':
optimizer = optim.Adam((filter(lambda p: p.requires_grad, model.parameters())), lr=1e-4) # 1e-4
elif args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
print("<<<<<<<<<<<<<< SPECIFICATIONS >>>>>>>>>>>>>>>")
print("Test only: ", args.test_only)
print("Use cosface: ", args.use_cosface)
if not args.test_only and args.use_cosface:
print("Margin: ", args.m)
if not args.test_only:
print("Train Dataset: ", args.train_dataset)
print("Test Dataset: ", args.test_dataset)
trainer = Trainer(args=args,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
val_dataloader=val_dataloader,
model=model,
criterion=criterion,
optimizer=optimizer) # 0.0005
if not args.test_only:
trainer.train()
trainer.test()
# # Check total number of parameters