-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
461 lines (389 loc) · 17.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for providing semantic segmentaion data.
The SegmentationDataset class provides both images and annotations (semantic
segmentation and/or instance segmentation) for TensorFlow. Currently, we
support the following datasets:
1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/).
PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects
(e.g., bike, person, and so on) and leaves all the other semantic classes as
one background class. The dataset contains 1464, 1449, and 1456 annotated
images for the training, validation and test respectively.
2. Cityscapes dataset (https://www.cityscapes-dataset.com)
The Cityscapes dataset contains 19 semantic labels (such as road, person, car,
and so on) for urban street scenes.
3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K)
The ADE20K dataset contains 150 semantic labels both urban street scenes and
indoor scenes.
References:
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, The pascal visual object classes challenge a retrospective.
IJCV, 2014.
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban
scene understanding," In Proc. of CVPR, 2016.
B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsing
through ADE20K dataset", In Proc. of CVPR, 2017.
"""
import os
import collections
from typing import List, Optional, Tuple
from tqdm import tqdm
import tensorflow.compat.v1 as tf
from utils import pil2vit, seg2multihot, \
resize, affine_transform, color_transform, imsize
from omegaconf import OmegaConf
IMAGE = 'image'
IMAGE_NAME = 'image_name'
CLASS_LABELS = 'class_label'
SEG_LABELS = 'seg_label'
ORIGINAL_IMAGE = 'original_image'
ORIGINAL_LABEL = 'original_label'
AFFINE = 'affine'
IMAGE_ET = 'image_et'
AFFINE_ET = 'affine_et'
HEIGHT = 'height'
WIDTH = 'width'
# Test set name.
TEST_SET = 'test'
DTYPES = {
IMAGE : tf.float32,
IMAGE_NAME : tf.string,
CLASS_LABELS : tf.int32,
SEG_LABELS : tf.int32,
ORIGINAL_IMAGE : tf.float32,
ORIGINAL_LABEL : tf.int32,
AFFINE : tf.float32,
IMAGE_ET : tf.float32,
AFFINE_ET : tf.float32,
HEIGHT : tf.int32,
WIDTH : tf.int32,
}
# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple(
'DatasetDescriptor',
[
'splits_to_sizes', # Splits of the dataset into training, val and test.
'num_classes', # Number of semantic classes, including the
# background class (if exists). For example, there
# are 20 foreground classes + 1 background class in
# the PASCAL VOC 2012 dataset. Thus, we set
# num_classes=21.
'ignore_label', # Ignore label value.
])
_VOC12_SEG_INFO = DatasetDescriptor(
splits_to_sizes={
'train': 1464,
'trainaug': 10582,
'trainval': 2913,
'val': 1449,
'test': 1456,
},
num_classes=21,
ignore_label=255,
)
_COCO14_VOC12_SEG_INFO = DatasetDescriptor(
splits_to_sizes={
'train': 94571,
},
num_classes=21,
ignore_label=255,
)
_COCO14_SEG_INFO = DatasetDescriptor(
splits_to_sizes={
'train': 81477,
'val': 39884,
},
num_classes=81,
ignore_label=255,
)
_DATASETS_INFORMATION = {
'voc12': _VOC12_SEG_INFO,
'coco14_voc12': _COCO14_VOC12_SEG_INFO,
'coco14': _COCO14_SEG_INFO
}
# Default file pattern of TFRecord of TensorFlow Example.
_FILE_PATTERN = '%s-*'
class DatasetVITPCM(object):
"""Represents dataset for vit model."""
def __init__(self,
dataset_name: List[str] = ['voc12'],
split_name: List[str] = ['trainaug'],
dataset_dir: List[str] = ['datasets/voc12'],
batch_size: int = 1,
input_size: int = 384,
patch_size: int = 16,
crop_size: int = 128,
scale_size: int = 192,
num_workers: int = 1,
should_augment: bool = False,
should_shuffle: bool = False,
should_repeat: bool = False,
prob_rot90: float = 0.5,
prob_flip_ud: float = 0.5,
prob_flip_lr: float = 0.5,
prob_crop: float = 0.5,
replicas: int = 1):
"""Initializes the dataset.
Args:
dataset_name: The list of directory of the dataset split names.
split_name: A train/val list split names.
dataset_dir: The directory of the dataset sources.
batch_size: Batch size.
input_size: The size used to resize the image and label.
crop_size: The size used to crop the image and label.
scale_size: The size used to scale the image and label.
patch_size: The size used to shift the crop of the image and label.
num_workers: Number of readers for data provider.
should_augment: Boolean, if dataset is for training or not.
should_shuffle: Boolean, if should shuffle the input data.
should_repeat: Boolean, if should repeat the input data.
Raises:
ValueError: Dataset name and split name are not supported.
"""
if len(dataset_name) != len(split_name) != len(dataset_dir):
raise ValueError('you should provide a list of dataset names, splits and root directories.')
for name in dataset_name:
if name not in _DATASETS_INFORMATION:
raise ValueError('The specified dataset is not supported yet.')
self.dataset_name = dataset_name
splits_to_sizes = []
for name in dataset_name:
splits_to_sizes.extend(_DATASETS_INFORMATION[name].splits_to_sizes)
for split in split_name:
if split not in splits_to_sizes:
raise ValueError('data split name %s not recognized' % split)
self.split_name = split_name
self.dataset_dir = dataset_dir
self.batch_size = batch_size
self.input_size = input_size
self.num_workers = num_workers
self.should_augment = should_augment
self.should_shuffle = should_shuffle
self.should_repeat = should_repeat
self.replicas = replicas
self.crop_size = crop_size
self.scale_size = scale_size
self.patch_size = patch_size
self.prob_crop = prob_crop
self.prob_rot90 = prob_rot90
self.prob_flip_ud = prob_flip_ud
self.prob_flip_lr = prob_flip_lr
classes = [_DATASETS_INFORMATION[n].num_classes for n in self.dataset_name]
if not classes.count(classes[0]) == len(classes):
raise ValueError('datasets must have same number of classes')
self.num_classes = classes[0]
ignore_label = [_DATASETS_INFORMATION[n].ignore_label for n in self.dataset_name]
if not ignore_label.count(ignore_label[0]) == len(ignore_label):
raise ValueError('datasets must have same ignore_label')
self.ignore_label = ignore_label[0]
def get_one_shot_iterator(self):
"""Gets an iterator that iterates across the dataset once.
Returns:
An iterator of dype tf.data.Iterator.
"""
return self.get_dataset().make_one_shot_iterator()
def get_dataset(self):
"""Gets the dataset.
Returns:
The TFRecord dataset.
"""
list_files = []
for (dataset,split) in zip(self.dataset_dir,self.split_name):
list_files.extend(self._get_all_files(dataset,split))
dataset = tf.data.TFRecordDataset(list_files, num_parallel_reads=self.num_workers)
length = (sum(1 for fn in list_files for _ in tf.python_io.tf_record_iterator(fn)) // self.batch_size) * self.batch_size
if self.should_shuffle:
dataset = dataset.shuffle(buffer_size=length)
if self.should_repeat:
dataset = dataset.repeat() # Repeat forever for training.
else:
dataset = dataset.repeat(1)
dataset = (
dataset.map(self._parse_function, num_parallel_calls=self.num_workers)
.map(self._preprocess_image, num_parallel_calls=self.num_workers)
)
if not self.should_repeat:
dataset = dataset.apply(tf.data.experimental.assert_cardinality(length))
dataset = dataset.batch(self.batch_size).prefetch(self.batch_size)
return dataset
def _preprocess_image(self, sample):
"""Preprocesses the image and label.
Args:
sample: A sample containing image and label.
Returns:
sample: Sample with preprocessed image and label.
Raises:
ValueError: Ground truth label not provided during training.
"""
image = sample[IMAGE]
label = sample[CLASS_LABELS]
if self.batch_size==1:
##### Test case #####
# Original image is only used during visualization.
sample[ORIGINAL_IMAGE] = tf.identity(image)
if label is not None:
sample[ORIGINAL_LABEL] = tf.identity(label)
##### Resize to model input size #####
image = resize(tf.cast(image,tf.float32), imsize(self.input_size))
if label is not None:
label = resize(tf.cast(label,tf.int32), imsize(self.input_size))
if self.should_augment and label is not None:
##### Augmentation #####
# It is extremely important here to never use segmentation mask to
# produce different labels than the ones in the ground truth.
# no shift, only rotation, shift would imply we should check for labels consistency
# which could be opinable as approach, since ideally we should run this
# algothm on datasets with no segmentation at all, in that case this approach wouldn't be possible
########################
image_t1, label_t1, affine_t1 = affine_transform(image=color_transform(tf.identity(image)),
label=tf.identity(label), patch_size = self.patch_size, \
prob_rot90 = self.prob_rot90, prob_flip_ud = self.prob_flip_ud, \
prob_flip_lr = self.prob_flip_lr, prob_crop = self.prob_crop, \
crop_size = 0, scale_size = 0)
sample[IMAGE] = pil2vit(image_t1)
sample[CLASS_LABELS] = seg2multihot(tf.identity(label), self.num_classes, self.ignore_label) # 2D labels to 1D
sample[AFFINE] = affine_t1
sample[SEG_LABELS] = label_t1 # for visualization and eval test only, not for training
# create a transformed version of the image
# to self train patch classification
image_t2, _, affine_t2 = affine_transform(image=color_transform(tf.identity(image)),
label=tf.identity(label), patch_size = self.patch_size, \
prob_rot90 = self.prob_rot90, prob_flip_ud = self.prob_flip_ud, \
prob_flip_lr = self.prob_flip_lr, prob_crop = self.prob_crop, \
crop_size = self.crop_size, scale_size = self.scale_size)
sample[IMAGE_ET] = pil2vit(image_t2)
sample[AFFINE_ET] = affine_t2
else:
##### No augmentation ######
sample[IMAGE] = pil2vit(tf.identity(image))
if label is not None:
sample[SEG_LABELS] = label
sample[CLASS_LABELS] = seg2multihot(label, self.num_classes, self.ignore_label) if label is not None else None
return sample
def _get_all_files(self, dataset_dir, split_name):
"""Gets all the files to read data from.
Returns:
A list of input files.
"""
print(f'[INFO]: Load from {dataset_dir}, split {split_name}')
file_pattern = _FILE_PATTERN
file_pattern = os.path.join(dataset_dir,
file_pattern % split_name)
return tf.gfile.Glob(file_pattern)
def _parse_function(self, example_proto):
"""Function to parse the example proto.
Args:
example_proto: Proto in the format of tf.Example.
Returns:
A dictionary with parsed image, label, height, width and image name.
Raises:
ValueError: Label is of wrong shape.
"""
# Currently only supports jpeg and png.
# Need to use this logic because the shape is not known for
# tf.image.decode_image and we rely on this info to
# extend label if necessary.
def _decode_image(content, channels):
return tf.cond(
tf.image.is_jpeg(content),
lambda: tf.image.decode_jpeg(content, channels),
lambda: tf.image.decode_png(content, channels))
seg_dict = {}
if all(name != TEST_SET for name in self.split_name):
seg_dict = {
'image/segmentation/class/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/segmentation/class/format':
tf.FixedLenFeature((), tf.string, default_value='png'),
}
features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/filename':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height':
tf.FixedLenFeature((), tf.int64, default_value=0),
'image/width':
tf.FixedLenFeature((), tf.int64, default_value=0),
**seg_dict
}
parsed_features = tf.parse_single_example(example_proto, features)
image = _decode_image(parsed_features['image/encoded'], channels=3)
label = None
if all(name != TEST_SET for name in self.split_name):
label = _decode_image(
parsed_features['image/segmentation/class/encoded'], channels=1)
image_name = parsed_features['image/filename']
if image_name is None:
image_name = tf.constant('')
sample = {
IMAGE: image,
IMAGE_NAME: image_name,
HEIGHT: parsed_features['image/height'],
WIDTH: parsed_features['image/width'],
}
if label is not None:
if label.get_shape().ndims == 2:
label = tf.expand_dims(label, 2)
elif label.get_shape().ndims == 3 and label.shape.dims[2] == 1:
pass
else:
raise ValueError('Input label shape must be [height, width], or '
'[height, width, 1].')
label.set_shape([None, None, 1])
sample[CLASS_LABELS] = label
return sample
class DatasetVITPCMDistributed(DatasetVITPCM):
"""Represents distributed dataset for vit model."""
def __init__(self, config: OmegaConf, set_name: str = 'train', num_replicas: int = 1):
TRAIN_DICT = dict(
split_name=config.DATASET.SPLIT.TRAIN.split(','),
batch_size=config.SOLVER.BATCH_SIZE.TRAIN * num_replicas,
input_size=config.IMAGE.SIZE.TRAIN,
crop_size=config.IMAGE.SIZE.CROP,
scale_size=config.IMAGE.SIZE.SCALE,
should_augment=True,
should_shuffle=True,
prob_crop=config.DATASET.AUGMENTATIONS.PROB_CROP,
prob_flip_lr=config.DATASET.AUGMENTATIONS.PROB_FLIP_LR,
prob_flip_ud=config.DATASET.AUGMENTATIONS.PROB_FLIP_UD,
prob_rot90=config.DATASET.AUGMENTATIONS.PROB_ROT90,
)
VAL_DICT = dict(
split_name=config.DATASET.SPLIT.VAL.split(','),
batch_size=config.SOLVER.BATCH_SIZE.VAL * num_replicas,
input_size=config.IMAGE.SIZE.VAL,
should_augment=False,
should_shuffle=False,
)
TEST_DICT = dict(
split_name=config.DATASET.SPLIT.TEST.split(','),
batch_size=config.SOLVER.BATCH_SIZE.TEST,
input_size=config.IMAGE.SIZE.TEST,
should_augment=False,
should_shuffle=False,
)
DICT = dict(train=TRAIN_DICT, val=VAL_DICT, test=TEST_DICT)
super(DatasetVITPCMDistributed, self).__init__(
dataset_name=config.DATASET.NAME.split(','),
dataset_dir=config.DATASET.ROOT.split(','),
patch_size=config.MODEL.PATCH_SIZE,
num_workers=config.DATALOADER.NUM_WORKERS,
replicas=num_replicas, **DICT.get(set_name)
)