-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
151 lines (134 loc) · 6.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from common.text.symbols import get_symbols, get_pad_idx
from fastpitch.model import FastPitch
from fastpitch.model_jit import FastPitchJIT
from waveglow.model import WaveGlow
def parse_model_args(model_name, parser, add_help=False):
if model_name == 'WaveGlow':
from waveglow.arg_parser import parse_waveglow_args
return parse_waveglow_args(parser, add_help)
elif model_name == 'FastPitch':
from fastpitch.arg_parser import parse_fastpitch_args
return parse_fastpitch_args(parser, add_help)
else:
raise NotImplementedError(model_name)
def init_bn(module):
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
if module.affine:
module.weight.data.uniform_()
for child in module.children():
init_bn(child)
def get_model(model_name, model_config, device,
uniform_initialize_bn_weight=False, forward_is_infer=False,
jitable=False):
if model_name == 'WaveGlow':
model = WaveGlow(**model_config)
elif model_name == 'FastPitch':
if jitable:
model = FastPitchJIT(**model_config)
else:
model = FastPitch(**model_config)
else:
raise NotImplementedError(model_name)
if forward_is_infer:
model.forward = model.infer
if uniform_initialize_bn_weight:
init_bn(model)
return model.to(device)
def get_model_config(model_name, args):
""" Code chooses a model based on name"""
if model_name == 'WaveGlow':
model_config = dict(
n_mel_channels=args.n_mel_channels,
n_flows=args.flows,
n_group=args.groups,
n_early_every=args.early_every,
n_early_size=args.early_size,
WN_config=dict(
n_layers=args.wn_layers,
kernel_size=args.wn_kernel_size,
n_channels=args.wn_channels
)
)
return model_config
elif model_name == 'FastPitch':
model_config = dict(
# io
n_mel_channels=args.n_mel_channels,
# symbols
n_symbols=len(get_symbols(args.symbol_set)),
padding_idx=get_pad_idx(args.symbol_set),
symbols_embedding_dim=args.symbols_embedding_dim,
# input FFT
in_fft_n_layers=args.in_fft_n_layers,
in_fft_n_heads=args.in_fft_n_heads,
in_fft_d_head=args.in_fft_d_head,
in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size,
in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size,
in_fft_output_size=args.in_fft_output_size,
p_in_fft_dropout=args.p_in_fft_dropout,
p_in_fft_dropatt=args.p_in_fft_dropatt,
p_in_fft_dropemb=args.p_in_fft_dropemb,
# output FFT
out_fft_n_layers=args.out_fft_n_layers,
out_fft_n_heads=args.out_fft_n_heads,
out_fft_d_head=args.out_fft_d_head,
out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size,
out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size,
out_fft_output_size=args.out_fft_output_size,
p_out_fft_dropout=args.p_out_fft_dropout,
p_out_fft_dropatt=args.p_out_fft_dropatt,
p_out_fft_dropemb=args.p_out_fft_dropemb,
# duration predictor
dur_predictor_kernel_size=args.dur_predictor_kernel_size,
dur_predictor_filter_size=args.dur_predictor_filter_size,
p_dur_predictor_dropout=args.p_dur_predictor_dropout,
dur_predictor_n_layers=args.dur_predictor_n_layers,
# pitch predictor
pitch_predictor_kernel_size=args.pitch_predictor_kernel_size,
pitch_predictor_filter_size=args.pitch_predictor_filter_size,
p_pitch_predictor_dropout=args.p_pitch_predictor_dropout,
pitch_predictor_n_layers=args.pitch_predictor_n_layers,
# pitch conditioning
pitch_embedding_kernel_size=args.pitch_embedding_kernel_size,
# speakers parameters
n_speakers=args.n_speakers,
speaker_emb_weight=args.speaker_emb_weight,
# energy predictor
energy_predictor_kernel_size=args.energy_predictor_kernel_size,
energy_predictor_filter_size=args.energy_predictor_filter_size,
p_energy_predictor_dropout=args.p_energy_predictor_dropout,
energy_predictor_n_layers=args.energy_predictor_n_layers,
# energy conditioning
energy_conditioning=args.energy_conditioning,
energy_embedding_kernel_size=args.energy_embedding_kernel_size,
)
return model_config
else:
raise NotImplementedError(model_name)