-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix Chain Multiplication 2
58 lines (47 loc) · 1.1 KB
/
Matrix Chain Multiplication 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// See the Cormen book for details of the following algorithm
#include<stdio.h>
#include<limits.h>
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
int MatrixChainOrder(int p[], int n)
{
/* For simplicity of the program, one extra row and one
extra column are allocated in m[][]. 0th row and 0th
column of m[][] are not used */
int m[n][n];
int i, j, k, L, q;
/* m[i,j] = Minimum number of scalar multiplications needed
to compute the matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for (i=1; i<n; i++)
m[i][i] = 0;
// L is chain length.
for (L=2; L<n; L++)
{
for (i=1; i<n-L+1; i++)
{
j = i+L-1;
m[i][j] = INT_MAX;
for (k=i; k<=j-1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n-1];
}
int main()
{
int n,i;
scanf("%d",&n);
int arr[n];
for(i=0;i<n;i++)
scanf("%d",&arr[i]);
printf("Minimum number of multiplications is %d ",
MatrixChainOrder(arr, n));
getchar();
return 0;
}