-
Notifications
You must be signed in to change notification settings - Fork 0
Data structures
This documentation provides an overview of the data structures used for the network detection software.
Different supported network input formats (each has a different loader under /networks/loaders/)
-
simple_adj_txt
: Simple adjacency matrix in text format. Each line contains (v1, v2, w), where v1 -> v2, and w is ignored -
worm_wiring_xlsx
: C.elegans connectomes from wormwiring -
polarity_xlsx
: C.elegans connectomes with polarity data in Excel format , from the paper -
durbin_txt
: C.elegans connectomes from Durbin in a text format. -
multilayer
: C.elegans multilayer connectomes from the paper -
graph
: General graph (list of strings (tuples) where each is an edge. in the format: ["1 2" "2 3" ...]) -
binary_network
: Binary network file format (saved by this software)
An enumeration of algorithms used for subgraph detection:
-
specific
: Specific subgraph detection algorithm. -
mfinder_induced
: MFinder induced subgraphs. -
mfinder_none_induced
: MFinder non-induced subgraphs. -
fanmod_esu
: Fanmod ESU algorithm. -
triadic_census
: Triadic census algorithm.
An enumeration of random network generation algorithms:
-
markov_chain_switching
: Markov chain switching algorithm. -
nerve_ring_markov_chain_switching
: Markov chain switching algorithm for nerve ring networks. -
erdos_renyi
: Erdős-Rényi random graph model. -
barabasi
: Barabási-Albert scale-free network model.
An enumeration of different types of motifs:
-
motif
: Regular motif. -
anti_motif
: Anti-motif. -
none
: No motif.
An enumeration of specific motif names:
-
self_loop
: Self-loop motif. -
mutual_regulation
: Mutual regulation motif. -
fan_out
: Fan-out motif (also known as sim_2). -
fan_in
: Fan-in motif. -
cascade
: Cascade motif. -
feed_forward
: Feed-forward motif. -
bi_fan
: Bi-fan motif. -
bi_parallel
: Bi-parallel motif. -
sim_3
: Sim_3 motif. -
na
: Not available (n/a).
A Pydantic model that defines the arguments for loading a network:
-
synapse_threshold
: Integer threshold for synapses. -
filter_polarity
: Optional list of polarities to filter, default is['+', '-']
. -
filter_prim_nt
: Optional list of primary neurotransmitters or integers to filter, default is['GABA', 'Glu', 'ACh', 0]
. -
filter_syn_type
: Optional type of synapse to filter, default is'chem'
. -
filter_sex_type
: Optional sex type to filter, default is'herm'
. -
filter_nerve_ring_neurons
: Optional boolean to filter nerve ring neurons, default isFalse
. -
filter_monoamines
: Optional list of monoamines to filter, default is['dopamine', 'octopamine', 'serotonin', 'tyramine']
. -
allow_self_loops
: Optional boolean to allow self-loops, default isFalse
.
A Pydantic model defining criteria for motif detection:
-
alpha
: Significance level (float). -
uniqueness_threshold
: Threshold for uniqueness (int). -
use_uniq_criteria
: Boolean to indicate if uniqueness criteria should be used. -
frequency_threshold
: Frequency threshold for motif detection (float).
A Pydantic model for storing the results of motif criteria evaluation:
-
n_real
: Number of real appearances of the motif (int). -
is_statistically_significant
: Optional boolean indicating statistical significance, default isFalse
. -
n_rand
: Optional float representing the number of random appearances. -
z_score
: Optional float for the z-score. -
std
: Optional float for the standard deviation. -
p_value
: Optional float for the p-value. -
uniq
: Optional integer for uniqueness. -
is_motif_frequent
: Optional boolean indicating if the motif is frequent. -
is_anti_motif_frequent
: Optional boolean indicating if the anti-motif is frequent. -
is_uniq
: Optional boolean or string indicating if it is unique. -
is_motif
: OptionalMotifType
indicating the type of motif.
A Pydantic model for polarity frequencies:
-
frequency
: Frequency count (int). -
polarity
: List of polarities (list of strings). -
sub_graphs
: List of subgraphs (list).
A Pydantic model representing a motif:
-
name
:MotifName
of the motif. -
id
: ID of the motif or subgraph (int or string). -
adj_mat
: Adjacency matrix (numpy array). -
role_pattern
: List of role patterns as tuples (list of tuples). -
n_real
: Optional number of real appearances (int, default is0
). -
motif_criteria
: OptionalMotifCriteriaResults
. -
random_network_samples
: Optional list of integers representing random network samples (list of ints). -
sub_graphs
: Optional list of subgraph appearances in tuple-edge format (list of tuples). -
node_roles
: Optional dictionary of node roles and frequencies (dict). -
node_appearances
: Optional dictionary of node appearances (dict). -
polarity_motifs
: Optional list of related motifs (list ofMotif
). -
polarity
: Optional list of polarities (list of strings).
A Pydantic model for the result of a subgraph search:
-
fsl
: Dictionary of frequent subgraph lists (dict). -
fsl_fully_mapped
: Same frequent subgraph lists with fully mapped subgraphs (dict).
An extension of SubGraphSearchResult
with additional attributes:
-
adj_mat
: Dictionary of adjacency matrices (dict of numpy arrays).
A TypedDict representing the binary file for search results:
-
args
:Namespace
containing arguments. -
motifs
: Dictionary of motifs (dict).
A TypedDict representing the binary file for network data:
-
graph
:DiGraph
representing the network. -
participating_nodes
: Set of participating nodes. -
neuron_names
: List of neuron names.