-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathWavDecoder.cpp
326 lines (264 loc) · 11.4 KB
/
WavDecoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
Copyright (c) 2019, Dimitri Diakopoulos All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "Decoders.h"
#include <cstring>
using namespace nqr;
struct ADPCMState
{
int frame_size;
int firstDataBlockByte;
int dataSize;
int currentByte;
const uint8_t * inBuffer;
};
static const int ima_index_table[16] =
{
-1, -1, -1, -1, // +0 / +3 : - the step
2, 4, 6, 8, // +4 / +7 : + the step
-1, -1, -1, -1, // -0 / -3 : - the step
2, 4, 6, 8, // -4 / -7 : + the step
};
static inline int ima_clamp_index(int index)
{
if (index < 0) return 0;
else if (index > 88) return 88;
return index;
}
static inline int16_t ima_clamp_predict(int16_t predict)
{
if (predict < -32768) return -32768;
else if (predict > 32767) return 32767;
return predict;
}
static const int ima_step_table[89] =
{
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34,
37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494,
544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552,
1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026,
4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442,
11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623,
27086, 29794, 32767
};
// Decodes an IMA ADPCM nibble to a 16 bit pcm sample
static inline int16_t decode_nibble(uint8_t nibble, int16_t & p, int & s)
{
// Compute a delta to add to the predictor value
int diff = ima_step_table[s] >> 3;
if (nibble & 4) diff += ima_step_table[s];
if (nibble & 2) diff += ima_step_table[s] >> 1;
if (nibble & 1) diff += ima_step_table[s] >> 2;
// Sign
if (nibble & 8) diff = -diff;
// Add delta
p += diff;
s += ima_index_table[nibble];
s = ima_clamp_index(s);
return ima_clamp_predict(p);
}
void decode_ima_adpcm(ADPCMState & state, int16_t * outBuffer, uint32_t num_channels)
{
const uint8_t * data = state.inBuffer;
// Loop over the interleaved channels
for (uint32_t ch = 0; ch < num_channels; ch++)
{
const int byteOffset = ch * 4;
// Header Structure:
// Byte0: packed low byte of the initial predictor
// Byte1: packed high byte of the initial predictor
// Byte2: initial step index
// Byte3: Reserved empty value
int16_t predictor = ((int16_t)data[byteOffset + 1] << 8) | data[byteOffset];
int stepIndex = data[byteOffset + 2];
uint8_t reserved = data[byteOffset + 3];
if (reserved != 0) throw std::runtime_error("adpcm decode error");
int byteIdx = num_channels * 4 + byteOffset; //the byte index of the first data word for this channel
int idx = ch;
// Decode nibbles of the remaining data
while (byteIdx < state.frame_size)
{
for (int j = 0; j < 4; j++)
{
outBuffer[idx] = decode_nibble(data[byteIdx] & 0xf, predictor, stepIndex); // low nibble
idx += num_channels;
outBuffer[idx] = decode_nibble(data[byteIdx] >> 4, predictor, stepIndex); // high nibble
idx += num_channels;
byteIdx++;
}
byteIdx += (num_channels - 1) << 2; // Jump to the next data word for the current channel
}
}
}
//////////////////////
// Public Interface //
//////////////////////
void WavDecoder::LoadFromPath(AudioData * data, const std::string & path)
{
auto fileBuffer = nqr::ReadFile(path);
return LoadFromBuffer(data, fileBuffer.buffer);
}
void WavDecoder::LoadFromBuffer(AudioData * data, const std::vector<uint8_t> & memory)
{
//////////////////////
// Read RIFF Header //
//////////////////////
//@todo swap methods for rifx
RiffChunkHeader riffHeader = {};
memcpy(&riffHeader, memory.data(), 12);
// Files should be 2-byte aligned
// @tofix: enforce this
// bool usePaddingShort = ((riffHeader.file_size % sizeof(uint16_t)) == 1) ? true : false;
// Check RIFF
if (riffHeader.id_riff != GenerateChunkCode('R', 'I', 'F', 'F'))
{
// Check RIFX + FFIR
if (riffHeader.id_riff == GenerateChunkCode('R', 'I', 'F', 'X') || riffHeader.id_riff == GenerateChunkCode('F', 'F', 'I', 'R'))
{
// We're not RIFF, and we don't match RIFX or FFIR either
throw std::runtime_error("libnyquist doesn't support big endian files");
}
else
{
throw std::runtime_error("bad RIFF/RIFX/FFIR file header");
}
}
if (riffHeader.id_wave != GenerateChunkCode('W', 'A', 'V', 'E')) throw std::runtime_error("bad WAVE header");
auto expectedSize = (memory.size() - riffHeader.file_size);
if (expectedSize != sizeof(uint32_t) * 2)
{
throw std::runtime_error("declared size of file less than file size"); //@todo warning instead of runtime_error
}
//////////////////////
// Read WAVE Header //
//////////////////////
auto WaveChunkInfo = ScanForChunk(memory, GenerateChunkCode('f', 'm', 't', ' '));
if (WaveChunkInfo.offset == 0) throw std::runtime_error("couldn't find fmt chunk");
assert(WaveChunkInfo.size == 16 || WaveChunkInfo.size == 18 || WaveChunkInfo.size == 20 || WaveChunkInfo.size == 40);
WaveChunkHeader wavHeader = {};
memcpy(&wavHeader, memory.data() + WaveChunkInfo.offset, sizeof(WaveChunkHeader));
if (wavHeader.chunk_size < 16)
throw std::runtime_error("format chunk too small");
//@todo validate wav header (sane sample rate, bit depth, etc)
data->channelCount = wavHeader.channel_count;
data->sampleRate = wavHeader.sample_rate;
data->frameSize = wavHeader.frame_size;
auto bit_depth = wavHeader.bit_depth;
switch (bit_depth)
{
case 4: data->sourceFormat = PCMFormat::PCM_16; break; // for IMA ADPCM
case 8: data->sourceFormat = PCMFormat::PCM_U8; break;
case 16: data->sourceFormat = PCMFormat::PCM_16; break;
case 24: data->sourceFormat = PCMFormat::PCM_24; break;
case 32: data->sourceFormat = (wavHeader.format == WaveFormatCode::FORMAT_IEEE) ? PCMFormat::PCM_FLT : PCMFormat::PCM_32; break;
case 64: data->sourceFormat = (wavHeader.format == WaveFormatCode::FORMAT_IEEE) ? PCMFormat::PCM_DBL : PCMFormat::PCM_64; break;
}
//std::cout << wavHeader << std::endl;
bool scanForFact = false;
bool grabExtensibleData = false;
bool adpcmEncoded = false;
if (wavHeader.format == WaveFormatCode::FORMAT_IEEE)
{
scanForFact = true;
}
else if (wavHeader.format == WaveFormatCode::FORMAT_IMA_ADPCM)
{
adpcmEncoded = true;
scanForFact = true;
}
else if (wavHeader.format == WaveFormatCode::FORMAT_EXT)
{
// Used when (1) PCM data has more than 16 bits; (2) channels > 2; (3) bits/sample !== container size; (4) channel/speaker mapping specified;
scanForFact = true;
grabExtensibleData = true;
}
else if (wavHeader.format == WaveFormatCode::FORMAT_UNKNOWN)
{
throw std::runtime_error("unknown wave format");
}
////////////////////////////
// Read Additional Chunks //
////////////////////////////
FactChunk factChunk;
if (scanForFact)
{
auto FactChunkInfo = ScanForChunk(memory, GenerateChunkCode('f', 'a', 'c', 't'));
if (FactChunkInfo.size)
memcpy(&factChunk, memory.data() + FactChunkInfo.offset, sizeof(FactChunk));
}
if (grabExtensibleData)
{
ExtensibleData extData = {};
memcpy(&extData, memory.data() + WaveChunkInfo.offset + sizeof(WaveChunkHeader), sizeof(ExtensibleData));
// extData can be compared against the multi-channel masks defined in the header
// eg. extData.channel_mask == SPEAKER_5POINT1
}
//@todo smpl chunk could be useful
/////////////////////
// Read Bext Chunk //
/////////////////////
auto BextChunkInfo = ScanForChunk(memory, GenerateChunkCode('b', 'e', 'x', 't'));
BextChunk bextChunk = {};
if (BextChunkInfo.size)
{
memcpy(&bextChunk, memory.data() + BextChunkInfo.offset, sizeof(BextChunk));
}
/////////////////////
// Read DATA Chunk //
/////////////////////
auto DataChunkInfo = ScanForChunk(memory, GenerateChunkCode('d', 'a', 't', 'a'));
if (DataChunkInfo.offset == 0)
throw std::runtime_error("couldn't find data chunk");
DataChunkInfo.offset += 2 * sizeof(uint32_t); // ignore the header and size fields
if (adpcmEncoded)
{
ADPCMState s;
s.frame_size = wavHeader.frame_size;
s.firstDataBlockByte = 0;
s.dataSize = DataChunkInfo.size;
s.currentByte = 0;
s.inBuffer = const_cast<uint8_t*>(memory.data() + DataChunkInfo.offset);
size_t totalSamples = (factChunk.sample_length * wavHeader.channel_count); // Samples per channel times channel count
std::vector<int16_t> adpcm_pcm16(totalSamples * 2, 0); // Each frame decodes into twice as many pcm samples
uint32_t frameOffset = 0;
uint32_t frameCount = DataChunkInfo.size / s.frame_size;
for (uint32_t i = 0; i < frameCount; ++i)
{
decode_ima_adpcm(s, adpcm_pcm16.data() + frameOffset, wavHeader.channel_count);
s.inBuffer += s.frame_size;
frameOffset += (s.frame_size * 2) - (8 * wavHeader.channel_count);
}
data->lengthSeconds = ((float) totalSamples / (float) wavHeader.sample_rate) / wavHeader.channel_count;
data->samples.resize(totalSamples);
ConvertToFloat32(data->samples.data(), adpcm_pcm16.data(), totalSamples, data->sourceFormat);
}
else
{
data->lengthSeconds = ((float) DataChunkInfo.size / (float) wavHeader.sample_rate) / wavHeader.frame_size;
size_t totalSamples = (DataChunkInfo.size / wavHeader.frame_size) * wavHeader.channel_count;
data->samples.resize(totalSamples);
ConvertToFloat32(data->samples.data(), memory.data() + DataChunkInfo.offset, totalSamples, data->sourceFormat);
}
}
std::vector<std::string> WavDecoder::GetSupportedFileExtensions()
{
return {"wav", "wave"};
}