-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
307 lines (246 loc) · 10.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from glob import glob
from tqdm import tqdm
import torch
from plyfile import PlyData
from torch_geometric.data import Data, InMemoryDataset, Dataset
from itertools import product
from tqdm import tqdm
import params as p
import os.path as osp
import numpy as np
'''
File to generate the dataset from the ply files.
'''
def convert_data(path_to_raw='./masif_site_structures/', n=None, prefix='masif_site'):
'''Generate raw unprocessed torch file to generate pyg datasets with fewer
candidates.
'''
# Does this require a different dataset directory? Can try, just back up
# structures.pt file.
if n is None:
t = None
else:
t = int(n/5)
path_to_output = './datasets/{}_test/raw/'.format(prefix)
test_indices = []
test_structures = []
idx = 0
for path in tqdm(glob(path_to_raw + '/test/*')[:t], desc='Reading Structures'):
name = path.rsplit('/', 1)[1].split('.')[0]
test_structures.append(read_ply(path))
test_indices.append((idx, name))
idx += 1
print('Saving test structures to file as pytorch object ...')
torch.save(test_structures, path_to_output+'{}_structures.pt'.format(prefix))
torch.save(test_indices, path_to_output+'{}_indices.pt'.format(prefix))
path_to_output = './datasets/{}_train/raw/'.format(prefix)
train_indices = []
train_structures = []
idx = 0
for path in tqdm(glob(path_to_raw + '/train/*')[:n], desc='Reading Structures'):
name = path.rsplit('/', 1)[1].split('.')[0]
train_structures.append(read_ply(path))
train_indices.append((idx, name))
idx += 1
print('Saving train structures to file as pytorch object ...')
torch.save(train_structures, path_to_output+'{}_structures.pt'.format(prefix))
torch.save(train_indices, path_to_output+'{}_indices.pt'.format(prefix))
print('Done.')
def convert_data_for_dataset(path_to_raw='./structures/', n=None, prefix='masif_site'):
'''
Like convert_data converts structures from ply files into pytorch files. Unlike convert_data,
each structure gets it's own file. For use with the StructuresDataset class.
'''
if n is None:
t = None
else:
t = int(n/5)
path_to_output = './datasets/{}_test_ds/raw/'.format(prefix)
test_indices = []
idx = 0
print('Saving test structures to file as pytorch object ...')
for path in tqdm(glob(path_to_raw + '/test/*')[:t], desc='Reading Structures'):
name = path.rsplit('/', 1)[1].split('.')[0]
torch.save(read_ply(path), path_to_output+'{}_structure_{}.pt'.format(prefix, idx))
test_indices.append((idx, name))
idx += 1
torch.save(test_indices, path_to_output+'{}_indices.pt'.format(prefix))
path_to_output = './datasets/{}_train_ds/raw/'.format(prefix)
train_indices = []
idx = 0
print('Saving train structures to file as pytorch object ...')
for path in tqdm(glob(path_to_raw + '/train/*')[:n], desc='Reading Structures'):
name = path.rsplit('/', 1)[1].split('.')[0]
torch.save(read_ply(path), path_to_output+'{}_structure_{}.pt'.format(prefix, idx))
train_indices.append((idx, name))
idx += 1
torch.save(train_indices, path_to_output+'{}_indices.pt'.format(prefix))
print('Done.')
def generate_numpy_from_structures(prefix='full'):
# TODO: document and update from playground functions..
train_structures = Structures(root='./datasets/{}_train'.format(prefix))
train_indices = torch.load('./datasets/{}_train/raw/{}_indices.pt'.format(prefix))
collection = []
for idx, data in enumerate(train_structures):
name = train_indices[idx][1]
cat = torch.cat((data.pos, data.norm, data.x, data.shape_index, data.y), dim=1).numpy().append(name)
collection.append(cat)
train_array = np.asarray(collection)
test_structures = Structures(root='./datasets/{}_test'.format(prefix))
test_indices = torch.load('./datasets/{}/raw/{}_indices.pt'.format(prefix))
collection = []
for data in tqdm(test_structures, desc='Converting test structures -> numpy'):
name = train_indices[idx][1]
cat = torch.cat((data.pos, data.norm, data.x, data.shape_index, data.y), dim=1).numpy()
collection.append(cat)
test_array = np.asarray(collection)
def collate(data_list):
r"""Collates a python list of data objects to the internal storage
format of :class:`torch_geometric.data.InMemoryDataset`."""
keys = data_list[0].keys
data = data_list[0].__class__()
for key in keys:
data[key] = []
slices = {key: [0] for key in keys}
for item, key in product(data_list, keys):
data[key].append(item[key])
if torch.is_tensor(item[key]):
s = slices[key][-1] + item[key].size(item.__cat_dim__(key, item[key]))
else:
s = slices[key][-1] + 1
slices[key].append(s)
if hasattr(data_list[0], '__num_nodes__'):
data.__num_nodes__ = []
for item in data_list:
data.__num_nodes__.append(item.num_nodes)
for key in keys:
item = data_list[0][key]
if torch.is_tensor(item):
data[key] = torch.cat(
data[key], dim=data.__cat_dim__(key, data_list[0][key]))
elif isinstance(item, int) or isinstance(item, float):
data[key] = torch.tensor(data[key])
slices[key] = torch.tensor(slices[key], dtype=torch.long)
return data, slices
def read_ply(path, learn_iface=True):
'''
read_ply from pytorch_geometric does not capture the properties in ply
file. This function adds to pyg's read_ply function by capturing extra
properties: charge, hbond, hphob, and iface.
# Update! Shape data should now be included as a transform.
'''
if learn_iface is False:
raise NotImplementedError
with open(path, 'rb') as f:
data = PlyData.read(f)
pos = ([torch.tensor(data['vertex'][axis]) for axis in ['x', 'y', 'z']])
pos = torch.stack(pos, dim=-1)
norm = ([torch.tensor(data['vertex'][axis]) for axis in ['nx', 'ny', 'nz']])
norm = torch.stack(norm, dim=-1)
x = ([torch.tensor(data['vertex'][axis]) for axis in ['charge', 'hbond', 'hphob']])
x = torch.stack(x, dim=-1)
y = None
y = [torch.tensor(data['vertex']['iface'])]
y = torch.stack(y, dim=-1)
face = None
if 'face' in data:
faces = data['face']['vertex_indices']
faces = [torch.tensor(fa, dtype=torch.long) for fa in faces]
face = torch.stack(faces, dim=-1)
name = path.rsplit('/', 1)[1].split('.')[0]
data = Data(x=x, pos=pos, face=face, norm=norm, y=y, name=name)
return data
class MiniStructures(InMemoryDataset):
def __init__(self, root='./datasets/mini_pos/', transform=None, pre_transform=None):
super(MiniStructures, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property # What does the property decorator do?
def raw_file_names(self):
return ['mini_structures.pt']
@property
def processed_file_names(self):
return ['mini_structures.pt']
def download(self):
pass
def process(self):
data_list = torch.load(self.raw_paths[0])
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
class Structures(InMemoryDataset):
def __init__(self, root='./datasets/{}/'.format(p.dataset), pre_transform=None, transform=None):
self.prefix = p.dataset
self.has_nan = []
super(Structures, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return ['{}structures.pt'.format(self.prefix + '_')]
@property
def processed_file_names(self):
return ['{}structures.pt'.format(self.prefix + '_')]
def download(self):
pass
def process(self):
from utils import has_nan
data_list = torch.load(self.raw_paths[0])
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in tqdm(data_list)]
if data_list[0].shape_index is not None:
_, idx = has_nan(data_list)
self.has_nan.append(idx)
data_list = [data_list[i] for i in range(0, len(data_list)) if i not in idx]
torch.save(self.has_nan, osp.join(self.root, 'filtered_data_points.pt'))
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
class StructuresDataset(Dataset):
'''
Structures class for datasets that do not fit into memory.
'''
def __init__(self, root='./datasets/{}/'.format(p.dataset), pre_transform=None, transform=None,
prefilter=3):
self.device = torch.device('cpu')
self.pref = prefilter
self.has_nan = []
super(StructuresDataset, self).__init__(root, transform, pre_transform)
@property
def raw_file_names(self):
structure_name = glob('{}/raw/*_structure*'.format(self.root))[0].rsplit('/', 1)[1].rsplit('_', 1)[0]
n_files = len(glob('{}/raw/*_structure*'.format(self.root)))
return ['{name}_{num}.pt'.format(name=structure_name, num=idx) for idx in range(0, n_files)]
@property
def processed_file_names(self):
n_files = len(glob('{}/processed/data*'.format(self.root)))
if n_files == 0:
return ['data_0.pt']
else:
return ['data_{}.pt'.format(i) for i in range(0, n_files)] # right order
def download(self):
pass
def process(self):
from utils import has_nan
i = 0
for raw_path in tqdm(self.raw_paths):
data = torch.load(raw_path, map_location=self.device)
if self.pre_transform is not None:
data = self.pre_transform(data)
if data is None:
continue
# Filtering has to occur after pretransforming to evaluate if shape_index is nan
if self.pref is not None:
if max(torch.isnan(data.shape_index)):
self.has_nan.append(i)
continue
torch.save(data, osp.join(self.processed_dir, 'data_{}.pt'.format(i)))
i += 1
torch.save(self.has_nan, osp.join(self.root, 'filtered_data_points.pt'))
def __len__(self):
return len(self.processed_paths)
def get(self, idx):
data = torch.load(osp.join(self.processed_dir, 'data_{}.pt'.format(idx)))
return data