-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActiveAdam.py
121 lines (92 loc) · 4.98 KB
/
ActiveAdam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import math
import torch
from torch.optim.optimizer import Optimizer, required
class ActiveAdam(Optimizer):
def __init__(self, params, stepSize, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-2, amsgrad=False, lrHigh=2., lrLow=.5):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad,
lrHigh=lrHigh, lrLow=lrLow, stepSize=stepSize)
super(ActiveAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(ActiveAdam, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
# Perform optimization step
grad = p.grad
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
state['gai'] = torch.ones_like(p, memory_format=torch.preserve_format)
state['cumm'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Accumulate gradients for the epoch
state['cumm']+=(p.grad)
# Perform stepweight decay
p.mul_(1 - group['lr'] * state['gai'] * group['weight_decay'])
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
state['exp_avg'] = beta1 * (exp_avg) + (1-beta1)*(grad)
state['exp_avg_sq'] = beta2 * exp_avg_sq + (1-beta2)*grad.pow(2)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
# Correction
exp_avgCorr = state['exp_avg']/(1-beta1**state['step'])
exp_avg_sqCorr = state['exp_avg_sq']/(1-beta2**state['step'])
step_size = group['lr']
p -= step_size*state['gai']*(exp_avgCorr/(exp_avg_sqCorr.sqrt()+group['eps']))
# SetLR if i>0
if state['step']/group['stepSize'] > 1 and state['step']%group['stepSize']==0:
tmp2 = state['gradOld'].clone()
tmp3 = state['cumm'].clone()
tmp5 = state['gai'].clone()
state['gai'] = torch.where(tmp2*tmp3<=0, tmp5.mul(group['lrLow']), tmp5.add(group['lrHigh']))
# Resetting the accumulated gradients after each epoch
if state['step']%group['stepSize']==0:
cumm = state['cumm']
state['gradOld'] = cumm.clone()
state['cumm'] = torch.zeros_like(p, memory_format=torch.preserve_format)
return loss