-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
172 lines (143 loc) · 6.96 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
<!DOCTYPE HTML>
<html>
<head>
<title>Welcome to DLG-AAAI’21!</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="assets/css/main.css" />
</head>
<body class="is-preload">
<div id="page-wrapper">
<!-- Header -->
<div id="header">
<!-- Logo -->
<!-- <img src="images/isail_logo.png" alt="" /><span><h2>Welcome to <a href="index.html" id="logo">iSAIL</a> Lab !</h2></span>-->
<!-- Nav -->
<nav id="nav">
<ul>
<li class="current"><a href="index.html">Home</a></li>
<li><a href="cfp.html">CFP</a></li>
<li><a href="schedule.html">Schedule</a></li>
<li><a href="keynote.html">Keynote</a></li>
<li><a href="publications.html">Accepted Papers</a></li>
<li><a href="organization.html">Organization</a></li>
<li><a href="history.html">History</a></li>
</ul>
</nav>
</div>
<!-- Banner -->
<section id="banner">
<header>
<h2>Welcome to DLG-AAAI’21!</h2>
<a href="#" class="button">Learn More</a>
</header>
</section>
<section class="wrapper style1">
<div class="container">
<div id="content">
<!-- Content -->
<article>
<header>
<h2>Introduction</h2>
</header>
<p>Deep Learning models are at the core of research in Artificial Intelligence research today. It is well-known that deep learning techniques that were disruptive for Euclidean data such as images or sequence data such as text are not immediately applicable to graph-structured data. This gap has driven a tide in research for deep learning on graphs on various tasks such as graph representation learning, graph generation, and graph classification. New neural network architectures on graph-structured data have achieved remarkable performance in these tasks when applied to domains such as social networks, bioinformatics and medical informatics.</p>
<p>This wave of research at the intersection of graph theory and deep learning has also influenced other fields of science, including computer vision, natural language processing, inductive logic programming, program synthesis and analysis, automated planning, reinforcement learning, and financial security. Despite these successes, graph neural networks (GNNs) still face many challenges namely,</p>
<ul style="list-style-type:disc;">
<li>Modeling highly structured data with time-evolving, multi-relational, and multi-modal nature. Such challenges are profound in applications in social attributed networks, natural language processing, inductive logic programming, and program synthesis and analysis. Joint modeling of text or image content with underlying network structure is a critical topic for these domains.</li>
<li>Modeling complex data that involves mapping between graph-based inputs and other highly structured output data such as sequences, trees, and relational data with missing values. Natural Language Generation tasks such as SQL-to-Text and Text-to-AMR are emblematic of such challenge.</li>
</ul>
<p>This one-day workshop aims to bring together both academic researchers and industrial practitioners from different backgrounds and perspectives to above challenges. The workshop will consist of contributed talks, contributed posters, and invited talks on a wide variety of the methods and applications. Work-in-progress papers, demos, and visionary papers are also welcome. This workshop intends to share visions of investigating new approaches and methods at the intersection of Graph Neural Networks and real-world applications.</p>
<h2 id="dates">Important Dates (GMT)</h2>
<!-- <center>-->
<table style="width: 90%">
<tbody>
<tr>
<td><p>Paper Submission Deadline</p></td>
<td><p>Monday</p></td>
<td><p>November 9th, 2020</p></td>
</tr>
<tr>
<td><p>Notification of Acceptance</p></td>
<td><p>Monday</p></td>
<td><p>November 30th, 2020</p></td>
</tr>
<tr>
<td><p>Camera-ready deadline</p></td>
<td><p>Tuesday</p></td>
<td><p>December 15th, 2020</p></td>
</tr>
<tr>
<td><p>Workshop</p></td>
<td><p>Friday</p></td>
<td><p>February 2~9th, 2021</p></td>
</tr>
</tbody>
</table>
<!-- </center>-->
</article>
</div>
</div>
</section>
<!-- Gigantic Heading -->
<!-- <section class="wrapper style1">-->
<!-- <div class="container">-->
<!-- <header class="row">-->
<!-- <h2>News</h2>-->
<!-- </header>-->
<!-- <ul style="list-style-type:disc;">-->
<!-- <li>Please follow us at Twitter<a href=https://twitter.com>[Link]</a>.</li>-->
<!-- </ul>-->
<!-- </div>-->
<!-- </section>-->
<!-- Footer -->
<div id="footer">
<div class="container">
<div class="row">
<section class="col-6 col-12-narrower">
<h3>Get In Touch</h3>
<form>
<div class="row gtr-50">
<div class="col-6 col-12-mobilep">
<input type="text" name="name" id="name" placeholder="Name" />
</div>
<div class="col-6 col-12-mobilep">
<input type="email" name="email" id="email" placeholder="Email" />
</div>
<div class="col-12">
<textarea name="message" id="message" placeholder="Message" rows="5"></textarea>
</div>
<div class="col-12">
<ul class="actions">
<li><input type="submit" class="button alt" value="Send Message" /></li>
</ul>
</div>
</div>
</form>
</section>
</div>
</div>
<!-- Icons -->
<ul class="icons">
<li><a href="#" class="icon brands fa-twitter"><span class="label">Twitter</span></a></li>
<li><a href="#" class="icon brands fa-facebook-f"><span class="label">Facebook</span></a></li>
<li><a href="#" class="icon brands fa-github"><span class="label">GitHub</span></a></li>
<li><a href="#" class="icon brands fa-linkedin-in"><span class="label">LinkedIn</span></a></li>
<li><a href="#" class="icon brands fa-google-plus-g"><span class="label">Google+</span></a></li>
</ul>
<!-- Copyright -->
<div class="copyright">
<ul class="menu">
<li>© Untitled. All rights reserved</li><li>Design: <a href="http://html5up.net">HTML5 UP</a></li>
</ul>
</div>
</div>
</div>
<!-- Scripts -->
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/jquery.dropotron.min.js"></script>
<script src="assets/js/browser.min.js"></script>
<script src="assets/js/breakpoints.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
</body>
</html>