-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdqx_demo_library.py
393 lines (297 loc) · 10.3 KB
/
dqx_demo_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Databricks notebook source
# MAGIC %md
# MAGIC # Demonstrate DQX usage as a Library
# COMMAND ----------
# MAGIC %md
# MAGIC ## Installation of DQX in Databricks cluster
# COMMAND ----------
# MAGIC %pip install databricks-labs-dqx
# COMMAND ----------
dbutils.library.restartPython()
# COMMAND ----------
# MAGIC %md
# MAGIC ## Generation of quality rule candidates using Profiler
# MAGIC Note that profiling and generating quality rule candidates is normally a one-time operation and is executed as needed.
# COMMAND ----------
from databricks.labs.dqx.profiler.profiler import DQProfiler
from databricks.labs.dqx.profiler.generator import DQGenerator
from databricks.labs.dqx.profiler.dlt_generator import DQDltGenerator
from databricks.labs.dqx.engine import DQEngine
from databricks.sdk import WorkspaceClient
import yaml
schema = "col1: int, col2: int, col3: int, col4 int"
input_df = spark.createDataFrame([[1, 3, 3, 1], [2, None, 4, 1]], schema)
ws = WorkspaceClient()
# profile the input data
profiler = DQProfiler(ws)
summary_stats, profiles = profiler.profile(input_df)
print(yaml.safe_dump(summary_stats))
print(profiles)
# generate DQX quality rules/checks
generator = DQGenerator(ws)
checks = generator.generate_dq_rules(profiles) # with default level "error"
print(yaml.safe_dump(checks))
# generate Delta Live Table (DLT) expectations
dlt_generator = DQDltGenerator(ws)
dlt_expectations = dlt_generator.generate_dlt_rules(profiles, language="SQL")
print(dlt_expectations)
dlt_expectations = dlt_generator.generate_dlt_rules(profiles, language="Python")
print(dlt_expectations)
dlt_expectations = dlt_generator.generate_dlt_rules(profiles, language="Python_Dict")
print(dlt_expectations)
# save generated checks in a workspace file
user_name = spark.sql("select current_user() as user").collect()[0]["user"]
checks_file = f"/Workspace/Users/{user_name}/dqx_demo_checks.yml"
dq_engine = DQEngine(ws)
dq_engine.save_checks_in_workspace_file(checks, workspace_path=checks_file)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Loading checks and applying quality rules
# COMMAND ----------
from databricks.labs.dqx.engine import DQEngine
from databricks.sdk import WorkspaceClient
input_df = spark.createDataFrame([[1, 3, 3, 2], [2, 3, None, 1]], schema)
# load checks
dq_engine = DQEngine(WorkspaceClient())
checks = dq_engine.load_checks_from_workspace_file(workspace_path=checks_file)
# Option 1: apply quality rules and quarantine invalid records
valid_df, quarantined_df = dq_engine.apply_checks_by_metadata_and_split(input_df, checks)
display(valid_df)
display(quarantined_df)
# Option 2: apply quality rules and flag invalid records as additional columns (`_warning` and `_error`)
valid_and_quarantined_df = dq_engine.apply_checks_by_metadata(input_df, checks)
display(valid_and_quarantined_df)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Validating quality checks definition
# COMMAND ----------
import yaml
from databricks.labs.dqx.engine import DQEngine
from databricks.sdk import WorkspaceClient
checks = yaml.safe_load("""
- criticality: invalid_criticality
check:
function: is_not_null
arguments:
col_names:
- col1
- col2
""")
dq_engine = DQEngine(WorkspaceClient())
status = dq_engine.validate_checks(checks)
print(status.has_errors)
print(status.errors)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Applying quality rules using yaml-like dictionary
# COMMAND ----------
import yaml
from databricks.labs.dqx.engine import DQEngine
from databricks.sdk import WorkspaceClient
checks = yaml.safe_load("""
- criticality: error
check:
function: is_not_null
arguments:
col_names:
- col1
- col2
- criticality: error
check:
function: is_not_null_and_not_empty
arguments:
col_name: col3
- criticality: error
filter: col1 < 3
check:
function: is_not_null_and_not_empty
arguments:
col_name: col4
- criticality: warn
check:
function: value_is_in_list
arguments:
col_name: col4
allowed:
- 1
- 2
""")
# validate the checks
status = DQEngine.validate_checks(checks)
assert not status.has_errors
schema = "col1: int, col2: int, col3: int, col4 int"
input_df = spark.createDataFrame([[1, 3, 3, 1], [2, None, 4, 1]], schema)
dq_engine = DQEngine(WorkspaceClient())
# Option 1: apply quality rules and quarantine invalid records
valid_df, quarantined_df = dq_engine.apply_checks_by_metadata_and_split(input_df, checks)
display(valid_df)
display(quarantined_df)
# Option 2: apply quality rules and flag invalid records as additional columns (`_warning` and `_error`)
valid_and_quarantined_df = dq_engine.apply_checks_by_metadata(input_df, checks)
display(valid_and_quarantined_df)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Applying quality rules using DQX classes
# COMMAND ----------
from databricks.labs.dqx.col_functions import is_not_null, is_not_null_and_not_empty, value_is_in_list
from databricks.labs.dqx.engine import DQEngine, DQRule, DQRuleColSet
from databricks.sdk import WorkspaceClient
checks = DQRuleColSet( # define rule for multiple columns at once
columns=["col1", "col2"],
criticality="error",
check_func=is_not_null).get_rules() + [
DQRule( # define rule for a single column
name="col3_is_null_or_empty",
criticality="error",
check=is_not_null_and_not_empty("col3")),
DQRule( # define rule with a filter
name="col_4_is_null_or_empty",
criticality="error",
filter="col1 < 3",
check=is_not_null_and_not_empty("col4")),
DQRule( # name auto-generated if not provided
criticality="warn",
check=value_is_in_list("col4", ["1", "2"]))
]
schema = "col1: int, col2: int, col3: int, col4 int"
input_df = spark.createDataFrame([[1, 3, 3, 1], [2, None, 4, 1]], schema)
dq_engine = DQEngine(WorkspaceClient())
# Option 1: apply quality rules and quarantine invalid records
valid_df, quarantined_df = dq_engine.apply_checks_and_split(input_df, checks)
display(valid_df)
display(quarantined_df)
# Option 2: apply quality rules and flag invalid records as additional columns (`_warning` and `_error`)
valid_and_quarantined_df = dq_engine.apply_checks(input_df, checks)
display(valid_and_quarantined_df)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Applying checks in the Lakehouse medallion architecture
# COMMAND ----------
import yaml
from databricks.labs.dqx.engine import DQEngine
from databricks.sdk import WorkspaceClient
checks = yaml.safe_load("""
- check:
function: is_not_null
arguments:
col_names:
- vendor_id
- pickup_datetime
- dropoff_datetime
- passenger_count
- trip_distance
criticality: error
- check:
function: is_not_null
arguments:
col_names:
- pickup_longitude
- pickup_latitude
- dropoff_longitude
- dropoff_latitude
criticality: warn
- check:
function: not_less_than
arguments:
col_name: trip_distance
limit: 1
criticality: error
- check:
function: sql_expression
arguments:
expression: pickup_datetime > dropoff_datetime
msg: pickup time must not be greater than dropff time
name: pickup_datetime_greater_than_dropoff_datetime
criticality: error
- check:
function: not_in_future
arguments:
col_name: pickup_datetime
name: pickup_datetime_not_in_future
criticality: warn
""")
# validate the checks
status = DQEngine.validate_checks(checks)
assert not status.has_errors
dq_engine = DQEngine(WorkspaceClient())
# read the data, limit to 1000 rows for demo purpose
bronze_df = spark.read.format("delta").load("/databricks-datasets/delta-sharing/samples/nyctaxi_2019").limit(1000)
# apply your business logic here
bronze_transformed_df = bronze_df.filter("vendor_id in (1, 2)")
# apply quality checks
silver_df, quarantine_df = dq_engine.apply_checks_by_metadata_and_split(bronze_transformed_df, checks)
# COMMAND ----------
display(silver_df)
# COMMAND ----------
display(quarantine_df)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Creating custom checks
# COMMAND ----------
# MAGIC %md
# MAGIC ### Creating custom check function
# COMMAND ----------
import pyspark.sql.functions as F
from pyspark.sql import Column
from databricks.labs.dqx.col_functions import make_condition
def ends_with_foo(col_name: str) -> Column:
column = F.col(col_name)
return make_condition(column.endswith("foo"), f"Column {col_name} ends with foo", f"{col_name}_ends_with_foo")
# COMMAND ----------
# MAGIC %md
# MAGIC ### Applying custom check function
# COMMAND ----------
import yaml
from databricks.labs.dqx.engine import DQEngine
from databricks.sdk import WorkspaceClient
from databricks.labs.dqx.col_functions import *
# use built-in, custom and sql expression checks
checks = yaml.safe_load(
"""
- criticality: error
check:
function: is_not_null_and_not_empty
arguments:
col_name: col1
- criticality: error
check:
function: ends_with_foo
arguments:
col_name: col1
- criticality: error
check:
function: sql_expression
arguments:
expression: col1 LIKE 'str%'
msg: col1 starts with 'str'
"""
)
schema = "col1: string"
input_df = spark.createDataFrame([["str1"], ["foo"], ["str3"]], schema)
dq_engine = DQEngine(WorkspaceClient())
valid_and_quarantined_df = dq_engine.apply_checks_by_metadata(input_df, checks, globals())
display(valid_and_quarantined_df)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Applying custom column names
# COMMAND ----------
from databricks.sdk import WorkspaceClient
from databricks.labs.dqx.engine import (
DQEngine,
ExtraParams,
DQRule
)
from databricks.labs.dqx.col_functions import is_not_null_and_not_empty
# using ExtraParams class to configure the engine with custom column names
extra_parameters = ExtraParams(column_names={"errors": "dq_errors", "warnings": "dq_warnings"})
ws = WorkspaceClient()
dq_engine = DQEngine(ws, extra_params=extra_parameters)
schema = "col1: string"
input_df = spark.createDataFrame([["str1"], ["foo"], ["str3"]], schema)
checks = [ DQRule(
name="col_1_is_null_or_empty",
criticality="error",
check=is_not_null_and_not_empty("col1")),
]
valid_and_quarantined_df = dq_engine.apply_checks(input_df, checks)
display(valid_and_quarantined_df)