forked from resemble-ai/resemble-enhance
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathapp.py
70 lines (53 loc) · 2.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
import torch
import torchaudio
import gc
from resemble_enhance.enhancer.inference import denoise, enhance
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
def clear_gpu_cash():
# del model
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _fn(path, solver, nfe, tau,chunk_seconds,chunks_overlap, denoising):
if path is None:
return None, None
solver = solver.lower()
nfe = int(nfe)
lambd = 0.9 if denoising else 0.1
dwav, sr = torchaudio.load(path)
dwav = dwav.mean(dim=0)
wav1, new_sr = denoise(dwav, sr, device)
wav2, new_sr = enhance(dwav = dwav, sr = sr, device = device, nfe=nfe,chunk_seconds=chunk_seconds,chunks_overlap=chunks_overlap, solver=solver, lambd=lambd, tau=tau)
wav1 = wav1.cpu().numpy()
wav2 = wav2.cpu().numpy()
clear_gpu_cash()
return (new_sr, wav1), (new_sr, wav2)
def main():
inputs: list = [
gr.Audio(type="filepath", label="Input Audio"),
gr.Dropdown(choices=["Midpoint", "RK4", "Euler"], value="Midpoint", label="CFM ODE Solver (Midpoint is recommended)"),
gr.Slider(minimum=1, maximum=128, value=64, step=1, label="CFM Number of Function Evaluations (higher values in general yield better quality but may be slower)"),
gr.Slider(minimum=0, maximum=1, value=0.5, step=0.01, label="CFM Prior Temperature (higher values can improve quality but can reduce stability)"),
gr.Slider(minimum=1, maximum=40, value=10, step=1, label="Chunk seconds (more secods more VRAM usage)"),
gr.Slider(minimum=0, maximum=5, value=1, step=0.5, label="Chunk overlap"),
# chunk_seconds, chunks_overlap
gr.Checkbox(value=False, label="Denoise Before Enhancement (tick if your audio contains heavy background noise)"),
]
outputs: list = [
gr.Audio(label="Output Denoised Audio"),
gr.Audio(label="Output Enhanced Audio"),
]
interface = gr.Interface(
fn=_fn,
title="Resemble Enhance",
description="AI-driven audio enhancement for your audio files, powered by Resemble AI.",
inputs=inputs,
outputs=outputs,
)
interface.launch()
if __name__ == "__main__":
main()