-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompression.py
223 lines (146 loc) · 5.9 KB
/
compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
from scipy import fftpack
from abc import ABC, abstractmethod
def compression_factory(method_type, order, block_size):
if method_type == 'dft':
return DFTCompression(order, block_size)
elif method_type == 'dct':
return DCTCompression(order, block_size)
elif method_type == 'pca':
return PCACompression(order, block_size)
else:
return SVDCompression(order, block_size)
class BaseBlockCompression(ABC):
def __init__(self, order, block_size):
self.order = order
self.block_size = block_size
@abstractmethod
def encode_block(self,image):
pass
@abstractmethod
def decode_block(self,image):
pass
# Code based on https://github.com/SonuDileep/KL-transform-for-Image-Data-Compression/blob/master/KL_Transform%20for%20data:image%20compression.ipynb
def im2encoded_blocks(self, image): # to divide the image into blocks
image_block_list = []
for j in range(0, image.shape[1], self.block_size):
for i in range(0, image.shape[0], self.block_size):
image_block = image[i:i+self.block_size, j:j+self.block_size]
encoded_blocks = self.encode_block(image_block)
image_block_list.append(encoded_blocks)
image_block = image_block_list
return image_block
def encoded_block2im(self, block_list, image_size): # to combine the blocks back into image
width = image_size[1]
height = image_size[0]
result = np.zeros(image_size)
index_block = 0
for j in range(0,width,self.block_size):
for i in range(0,height,self.block_size):
result[i:i+self.block_size, j:j+self.block_size] = self.decode_block(block_list[index_block])
index_block += 1
return result
def encode_channel(self,image):
image = image.astype(np.double)
block_codes = self.im2encoded_blocks(image)
encoded_image = {'block_codes':block_codes, 'orig_dims':image.shape}
return encoded_image
def decode_channel(self,encoded_image):
block_codes = encoded_image['block_codes']
orig_dims = encoded_image['orig_dims']
image_comp = self.encoded_block2im(block_codes, orig_dims)
return image_comp
def encode_rgb(self, img_rgb):
img_encoded_rgb_list = []
for i in range(3):
img_c = img_rgb[:,:,i]
img_c_coded = self.encode_channel(img_c)
img_encoded_rgb_list.append(img_c_coded)
return img_encoded_rgb_list
def decode_rgb(self, img_encoded_rgb_list):
img_decoded_rgb_list = []
for i in range(3):
img_c_decoded = self.decode_channel(img_encoded_rgb_list[i])
img_decoded_rgb_list.append(img_c_decoded)
img_rgb = np.dstack(img_decoded_rgb_list)
img_rgb = np.around(img_rgb).astype(int)
return img_rgb
class DFTCompression(BaseBlockCompression):
def encode_block(self, image):
image_dft = np.fft.fft2(image)
num_freq = int(self.block_size*((self.order)**0.5))
image_compressed = image_dft[:num_freq,:num_freq]
code_dict = {'image_compressed':image_compressed, 'orig_dim':image.shape}
return code_dict
def decode_block(self, code_dict):
image_compressed = code_dict['image_compressed']
orig_dim = code_dict['orig_dim']
num_freq = image_compressed.shape[0]
image_reconstruction_freq = np.zeros(orig_dim, dtype=np.complex_)
image_reconstruction_freq[:num_freq,:num_freq] = image_compressed
image_compressed = np.fft.ifft2(image_reconstruction_freq).real
return image_compressed
class DCTCompression(BaseBlockCompression):
# Code for transforms from: http://www.jeanfeydy.com/Teaching/MasterClass_Radiologie/Part%206%20-%20JPEG%20compression.html
def dct2(self,f):
"""
Discrete Cosine Transform in 2D.
"""
return np.transpose(fftpack.dct(
np.transpose(fftpack.dct(f, norm = "ortho")), norm = "ortho"))
def idct2(self,f):
"""
Inverse Discrete Cosine Transform in 2D.
"""
return np.transpose(fftpack.idct(
np.transpose(fftpack.idct(f, norm = "ortho")), norm = "ortho"))
def encode_block(self, image):
image_dct = self.dct2(image)
num_freq = int(self.block_size*((self.order)**0.5))
image_compressed = image_dct[:num_freq,:num_freq]
code_dict = {'image_compressed':image_compressed, 'orig_dim':image.shape}
return code_dict
def decode_block(self, code_dict):
image_compressed = code_dict['image_compressed']
orig_dim = code_dict['orig_dim']
num_freq = image_compressed.shape[0]
image_reconstruction_freq = np.zeros(orig_dim)
image_reconstruction_freq[:num_freq,:num_freq] = image_compressed
image_compressed = self.idct2(image_reconstruction_freq)
return image_compressed
class PCACompression(BaseBlockCompression):
def encode_block(self, image):
size = image.shape[1]
mean = np.mean(image,axis=0)
image = image - mean
# Decorrelate columns of image
covariance = np.cov(image, rowvar=False)
_, eig = np.linalg.eigh(covariance) # Eigenvectors ordered low-to-high
PCA = image @ eig
# Quantization of the transformed image
D = int(self.order*self.block_size)
PCA_compressed = PCA[:,size-D:size]
eig_compressed = eig[:,size-D:size]
code_dict = {'PCA_compressed':PCA_compressed, 'eig_compressed':eig_compressed, 'mean':mean }
return code_dict
def decode_block(self, code_dict):
PCA_compressed = code_dict['PCA_compressed']
eig_compressed = code_dict['eig_compressed']
mean = code_dict['mean']
image_comp = (PCA_compressed @ np.transpose(eig_compressed)) + mean
return image_comp
class SVDCompression(BaseBlockCompression):
def encode_block(self, image):
D = int(self.order*self.block_size)
[Umat,Smat,Vmat] = np.linalg.svd(image, full_matrices=False, compute_uv=True, hermitian=False)
S_compressed = Smat[:D]
U_compressed = Umat[:,:D]
V_compressed = Vmat[:D,:]
code_dict = {'S_compressed':S_compressed, 'U_compressed':U_compressed, 'V_compressed':V_compressed }
return code_dict
def decode_block(self, code_dict):
S_compressed = code_dict['S_compressed']
U_compressed = code_dict['U_compressed']
V_compressed = code_dict['V_compressed']
img_compressed = np.dot(U_compressed * S_compressed, V_compressed)
return np.round(img_compressed)